Различие между прокариотическими и эукариотическими рибосомами
Определение
Прокариотические рибосомы относятся к свободным рибосомам у прокариот, а эукариотические рибосомы относятся к большим рибосомам, которые облегчают трансляцию у эукариот.
Нашел в
Прокариотические рибосомы обнаружены внутри бактерий и архей, в то время как эукариотические рибосомы обнаружены у животных, растений, грибов и других одноклеточных эукариот с ядром.
Размер
Прокариотические рибосомы маленькие, а эукариотические рибосомы больше. Кроме того, масса прокариотической рибосомы составляет 27000 кд, тогда как масса эукариотических рибосом составляет 42000 кд.
Коэффициент седиментации
Коэффициент седиментации прокариотических рибосом составляет 70S, тогда как коэффициент седиментации эукариотических рибосом составляет 80S.
Диаметр
Диаметр прокариотической рибосомы составляет ~ 200 Å, тогда как диаметр эукариотической рибосомы составляет ~ 250-300 Å.
субъединицы
Прокариотические рибосомы состоят из 50S и 30S субъединиц, а эукариотические рибосомы состоят из 60S и 40S субъединиц.
Количество рРНК в молекулах в большой субъединице
Большая субъединица прокариотических рибосом состоит из двух молекул рРНК: 23S рРНК и 5S рРНК, тогда как большая субъединица эукариотических рибосом состоит из трех молекул рРНК; 28S рРНК, 5,3S рРНК и 5S рРНК.
рРНК в рибосомальный белок рацион
Прокариотические рибосомы состоят из 60% рРНК и 40% рибосомных белков, тогда как эукариотические рибосомы состоят из 40% рРНК и 60% рибосомных белков.
Место нахождения
Прокариотические рибосомы встречаются свободно в цитоплазме, в то время как большинство эукариотических рибосом прикрепляются к внешней поверхности ядра и эндоплазматической сети.
Заключение
Прокариотические рибосомы являются бактериальными рибосомами, которые являются небольшими (70S), в то время как эукариотические рибосомы являются большими рибосомами (80S). Прокариотические рибосомы встречаются в цитоплазме свободно, в то время как большинство эукариотических рибосом связаны с мембраной. Оба типа рибосом состоят из двух субъединиц, называемых большой и маленькой субъединиц. Основное различие между прокариотическими и эукариотическими рибосомами заключается в размере и расположении рибосом в клетке.
Ссылка:
1. Берг, Джереми М. «Синтез белка эукариот отличается от синтеза белка прокариот, прежде всего при инициации трансляции».Достижения в педиатрии.Национальная медицинская библиотека США, 1 января 1970 г.
Обзор
Последовательность ДНК, которая кодирует последовательность аминокислот в белке, транскрибируется в цепь информационной РНК. Рибосомы связываются с матричными РНК и используют их последовательности для определения правильной последовательности аминокислот для генерации данного белка. Аминокислоты отбираются и переносятся на рибосому с помощью транспортной РНК (молекулы тРНК, которые входят в рибосому и связываются с цепью тРНК через петлю стебля антикодона . Для каждого кодирующего триплета ( кодона ) в матричной РНК существует уникальный переносящая РНК, которая должна иметь точное совпадение антикодонов и нести правильную аминокислоту для включения в растущую полипептидную цепь.После того, как белок продуцируется, он может затем складываться, чтобы создать функциональную трехмерную структуру.
Рибосома состоит из комплексов РНК и белков и, следовательно, представляет собой комплекс рибонуклеопротеинов . Каждая рибосома состоит из маленьких (30 S ) и больших (50 S ) компонентов, называемых субъединицами, которые связаны друг с другом:
- (30S) выполняет в основном кодирующую функцию и также связан с рРНК.
- (50S) выполняет в основном каталитическую функцию, а также связывается с аминоацилированными тРНК.
Синтез белков из их строительных блоков происходит в четыре фазы: инициация, удлинение, завершение и повторное использование. Стартовый кодон во всех молекулах мРНК имеет последовательность AUG. Стоп-кодон является одним из UAA, UAG или UGA; поскольку нет молекул тРНК, распознающих эти кодоны, рибосома распознает, что трансляция завершена. Когда рибосома заканчивает считывание молекулы мРНК, две субъединицы разделяются и обычно распадаются, но могут использоваться повторно. Рибосомы являются рибозимами , потому что каталитическая активность пептидилтрансферазы , связывающая аминокислоты вместе, осуществляется рибосомной РНК. Рибосомы часто связаны с внутриклеточными мембранами, составляющими .
Рибосомы из бактерий , архей и эукариот в трехдоменной системе очень похожи друг на друга, что свидетельствует об их общем происхождении. Они различаются по размеру, последовательности, структуре и соотношению белка к РНК. Различия в структуре позволяют некоторым антибиотикам убивать бактерии, ингибируя их рибосомы, не затрагивая человеческие рибосомы. У всех видов более одной рибосомы могут перемещаться по одной цепи мРНК одновременно (как полисома ), каждая «считывает» определенную последовательность и производит соответствующую молекулу белка.
В митохондриальных рибосомах эукариотических клеток функционально напоминают многие особенности тех , у бактерий, что отражает вероятное эволюционное происхождение митохондрий.
Общие характеристики
Рибосомы являются важными компонентами всех клеток и связаны с синтезом белка. Они очень маленькие по размеру, поэтому их можно визуализировать только в свете электронного микроскопа..
Рибосомы свободны в цитоплазме клетки, они прикреплены к шероховатой эндоплазматической сети — рибосомы дают «морщинистый» вид — и в некоторых органеллах, таких как митохондрии и хлоропласты..
Рибосомы, прикрепленные к мембранам, ответственны за синтез белков, которые будут вставлены в плазматическую мембрану или отправлены наружу клетки..
Свободные рибосомы, которые не связаны с какой-либо структурой в цитоплазме, синтезируют белки, предназначение которых находится внутри клетки. Наконец, рибосомы митохондрий синтезируют белки для митохондриального использования..
Таким же образом несколько рибосом могут соединяться и образовывать «полирибосомы», образуя цепь, связанную с РНК-мессенджером, синтезируя один и тот же белок, многократно и одновременно
Все они состоят из двух подразделений: одно называется большим или большим, а другое маленьким или меньшим.
Некоторые авторы считают, что рибосомы являются не мембранными органеллами, поскольку им не хватает этих липидных структур, хотя другие исследователи сами не считают их органеллами..
Строение рибосомы
В состав рибосомы входят особые РНК (рибосомные). А также своеобразные белки и малочисленные низкомолекулярные составляющие.
РНК органеллы
За структуру и работоспособность рибосомы в первую очередь отвечает её РHК. Рибонуклеиновая кислота органеллы или р-РНК в составе органеллы весьма компактна, обладает сложной третичной конструкцией и часто усыпана молекулами разных белков органеллы. Освобождённые от белковых соединений высокомолекулярные р-РHК в особых условиях самостоятельно скручиваются в мелкие частицы, по своей морфологии очень похожие на субчастицы рибосомы, основой которых они и являются.
Исходя из этого, общая схема структурной организации органеллы определяется свойствами р-РHК. Третичное устройство р-РНК служит каркасом для позиционирования рибосомных белков, которые в определённом понимании выполняют лишь второстепенную задачу в образовании и сохранении структуры рибосомы и её жизнедеятельности.
Есть предположение, что развитие органеллы началось ещё в добелковый период, и предшественниками рибосом были своеобразные древнейшие рибозимы
Предполагают, что в процессе эволюции (появление более сложной ступени организации живых организмов) рибозимы, способные к катализации появления амидных соединений тоже поддавались прогрессу (дополнялись различными аппаратами, а со временем и образованными ими полипептидами), вплоть до появления нынешнего модуля для синтеза белка, принимая во внимание рибосому.. В состав пептидилтрансферазного центра входит только кислота
То обстоятельство, что в то время, как почти во всех процессах жизненного функционала главную задачу выполняют белки, в образовании их самих основная роль принадлежит РНК, обеспечивает весомый аргумент в защиту гипотезы о пространстве РНК как о древнейшем добелковом периоде развития живой ткани.
В состав пептидилтрансферазного центра входит только кислота. То обстоятельство, что в то время, как почти во всех процессах жизненного функционала главную задачу выполняют белки, в образовании их самих основная роль принадлежит РНК, обеспечивает весомый аргумент в защиту гипотезы о пространстве РНК как о древнейшем добелковом периоде развития живой ткани.
РНК малой субъединицы
Рибосомная рибонуклеиновая кислота маленькой частицы органоида имеет маркировку 16 S р-РHК в случае органелл бактерий и 16 S -подобная р-РHК в других ситуациях. Чаще всего р-РНК маленькой субъединицы образована из одной ковалентно непрерывной полирибонуклеотидной цепочки.
Число звеньев нуклеотидов, как и постоянной величины седиментации, для экземпляров 16 S-подобных р-РHК из разных источников могут серьёзно отличаться. В рибосомах бактерий и пластидов высших представителей растительного мира эти частицы обладают размером порядка 1500 нуклеотидных остатков.
Для 16 S-подобных р-РНК цитоплазменных рибосом клеток с выраженным ядром, а также для митохондриальных рибосом высших растений и грибов типична длина до 2 тыс. нуклеотидных остатков (18 S р-РHК). Органеллы митохондрий млекопитающих животных содержат довольно короткие 16 S-подобные р-РНК (9 — 12 S), состоящие из 950 нуклеотидных остатков.
Рибонуклеиновая кислота большой частицы
Высокомолекулярная рибонуклеиновая кислота, представляющая основу конструкции большой субъединицы рибосомы, имеет обозначение 23 S р-РHК (для бактерий) и 23 S-подобная р-РНК (для иных случаев). Бактериальная 23 S р-РНК, точно также как и 16 S р-РHК имеет вид полирибонуклеотидной ковалентно непрерывной цепочки.
Вместе с этим 23 S-подобная р-РНК органеллы цитоплазмы эукариотических клеток включает в себя две прочно сгруппированных полирибонуклеотидных цепочек — 28 S и 5,8 S р-РHК. Таким же образом 23 S-подобная р-РHК рибосом пластидов растительных видов состоит из двух крепко соединённых полирибонуклеотидных цепей и включает 4,5 S р-РНК.
Белки органоида
Кроме р-РНК, в состав органеллы входят порядка пятидесяти (прокариоты) или восьмидесяти (эукариоты) разных белков. Почти каждый из них имеет один лишь экземпляр на отдельную рибосому. Доминируют умеренно-осно̀вные белки. Бо̀льшая часть белков органоида эволюционно консервативна, а белки от разных ресурсов могут соотноситься как подобные. Это учитывается в нынешнем универсальном перечне рибосомных белков. Сама органелла состоит почти на 50% из белка.
Синтез рибосом
Весь клеточный механизм, необходимый для синтеза рибосом, находится в ядрышке, плотной области ядра, которая не окружена мембранными структурами..
Ядрышко представляет собой вариабельную структуру, зависящую от типа клеток: оно крупное и заметное в клетках с высокими потребностями в белке и является практически незаметной областью в клетках, которые синтезируют небольшое количество белков.
Процессинг рибосомальной РНК происходит в этой области, где она связана с рибосомными белками и дает продукты гранулярной конденсации, которые являются незрелыми субъединицами, которые образовали функциональные рибосомы..
Субъединицы транспортируются вне ядра — через ядерные поры — в цитоплазму, где они собираются в зрелые рибосомы, которые могут начать синтез белка.
Гены рибосомальной РНК
У людей гены, кодирующие рибосомные РНК, обнаружены в пяти парах специфических хромосом: 13, 14, 15, 21 и 22. Поскольку клетки требуют большого количества рибосом, гены в этих хромосомах повторяются несколько раз.
Гены ядрышек кодируют рибосомальные РНК 5.8S, 18S и 28S и транскрибируются РНК-полимеразой в транскрипте-предшественнике 45S. 5S рибосомная РНК не синтезируется в ядрышке.
функции
Рибосомы отвечают за процесс синтеза белков в клетках всех организмов, являясь универсальным биологическим механизмом..
Рибосомы — вместе с РНК-переносчиком и РНК-мессенджером — способны декодировать сообщение ДНК и интерпретировать его в последовательности аминокислот, которые образуют все белки организма, в процессе, называемом трансляцией..
В свете биологии, перевод слова относится к изменению «языка» от нуклеотидных триплетов к аминокислотам..
Эти структуры являются центральной частью трансляции, где происходит большинство реакций, таких как образование пептидных связей и высвобождение нового белка.
Трансляция белков
Процесс образования белка начинается со связывания между РНК-мессенджером и рибосомой. Посланник движется через эту структуру в определенном конце, называемом «кодон начала цепи».
Когда РНК-мессенджер проходит через рибосому, образуется молекула белка, потому что рибосома способна интерпретировать сообщение, закодированное в мессенджере..
Это сообщение закодировано в триплетах нуклеотидов, в которых каждые три основания указывают определенную аминокислоту. Например, если РНК-мессенджер несет последовательность: AUG AUU CUU UUG GCU, образованный пептид состоит из аминокислот: метионина, изолейцина, лейцина, лейцина и аланина..
Этот пример демонстрирует «вырождение» генетического кода, поскольку более одного кодона — в данном случае CUU и UUG — кодируют аминокислоту одного типа. Когда рибосома обнаруживает стоп-кодон в РНК-мессенджере, трансляция заканчивается.
Рибосома имеет сайт A и сайт P. Сайт P связывает пептидил-тРНК, а в сайт A он входит в аминоацил-тРНК..
Передача РНК
Передающие РНК ответственны за транспортировку аминокислот к рибосоме и имеют последовательность, комплементарную триплету. Для каждой из 20 аминокислот, из которых состоят белки, существует транспортная РНК..
Химические стадии синтеза белка
Процесс начинается с активации каждой аминокислоты связыванием АТФ в комплексе аденозинмонофосфата, высвобождая высокоэнергетические фосфаты..
На предыдущем этапе получается аминокислота с избыточной энергией, и происходит связывание с соответствующей ей РНК-переносчиком с образованием комплекса аминокислота-тРНК. Здесь происходит высвобождение аденозинмонофосфата.
В рибосоме трансферная РНК находит РНК-мессенджер. На этом этапе последовательность переносящей или антикодонной РНК гибридизуется с кодоном или триплетом РНК-мессенджера. Это приводит к выравниванию аминокислоты с ее правильной последовательностью.
Фермент пептидилтрансфераза ответственен за катализ образования пептидных связей, которые связывают аминокислоты. Этот процесс потребляет большое количество энергии, так как он требует образования четырех высокоэнергетических связей для каждой аминокислоты, которая связывается с цепью.
Реакция удаляет гидроксильный радикал на СООН-конце аминокислоты и удаляет водород на NH-конце2 другой аминокислоты. Реактивные области двух аминокислот связывают и создают пептидную связь.
Рибосомы и антибиотики
Поскольку синтез белка является обязательным событием для бактерий, определенные антибиотики нацелены на рибосомы и различные стадии процесса трансляции..
Например, стрептомицин связывается с небольшой субъединицей, чтобы вмешиваться в процесс трансляции, вызывая ошибки при чтении РНК-мессенджера..
Другие антибиотики, такие как неомицины и гентамицины, также могут вызывать ошибки трансляции, связанные с небольшой субъединицей..
Сходства и различия в молекулярных процессах, протекающих в клетках прокариот и эукариот
Различия в организации генетического материала для этих групп не ограничиваются лишь его расположением и тем, замкнута ли ДНК в кольцо. Процессы транскрипции и трансляции у каждой группы имеют свои особенности. Например, для поддержания структуры ДНК и регуляции экспрессии генов в клетках эукариот и архей есть специальные белки – гистоны, которых нет у бактерий.
Гены бактерий собраны в опероны. Это означает, что несколько генов находятся друг за другом и имеют общий промотор (место старта трансляции), таким образом мРНК получается полицистронная, то есть кодирующая несколько белков. Эта особенность характерна и для архей. У эукариот, наоборот, для каждого гена есть свой промотор. В то же время, общим для эукариот и бактерий является наличие в генах некодирующих участков – интронов, которых нет у бактерий. Причем структура РНК-полимеразы, компонентов транскрипционного комплекса, а также все дальнейшие процессы транскрипции и дальнейшей обработки (процессинга) мРНК у эукариот и архей очень схожи, в то время, как у бактерий существенно отличаются. Например, транскрипция и трансляция, на матрице синтезируемой мРНК, у бактерий идут одновременно и для старта синтеза белка не требуется не требуется процессинга мРНК. Причем, трансляция бактерий начинается не с метионина, как у эукариот (и архей), а с формилметионина.
Помимо особенностей, связанных с транскрипцией и трансляцией, для прокариот, в отличие от эукариот, характерно большое разнообразие метаболических особенностей, таких как способность к метаногенезу архей, хемолитоавтотрофность, способность к фиксации азота и способность к аноксигенному фотосинтезу.
Исходя из этого, становится видно, что все три выделенные на настоящий момент домена – бактерии, археи и эукариоты существенно отличаются друг от друга. Причем археи, хоть и являются прокариотами и несут в своем строении типичные прокариотические черты – отсутствие ядра и мембранных органоидов в цитоплазме, кольцевая ДНК, кольцевая хромосома и многое другое, тем не менее в некоторых чертах похожи на эукариот. Говоря о родстве между этими тремя группами, стоит отметить, что согласно доминирующей в настоящее время гипотезе, считается, что не смотря на то, что и бактерии, и археи относятся к прокариотам, последние все же более близки к эукариотам. Таким образом, в ходе эволюции сперва произошло разделение на группу бактерий и некого общего предка, от которого в дальнейшем произошли археи и эукариоты
В современной науке принято использовать термин «микробиота»
S – константа седиментации. Скорость осаждения частицы при ультрацентрифугировании. В данном контексте ее используют, чтобы охарактеризовать размер частицы.
# Микробиология
# 11 класс
Группы эукариот
В настоящее время микроорганизмы разделяют на две большие группы, принципиально отличающиеся строением клетки – эукариоты и прокариоты (рис. 1). Группа эукариот включает в себя микроскопические водоросли, простейших и микроскопические грибы, такие как дрожжи и плесневые грибы. К прокариотам до 80-х годов относили исключительно бактерий, однако группой исследователей под руководством Карла Вёзе в ходе анализа последовательностей 16S рРНК, было обнаружено, что архебактерии (археи) по своему происхождению являются самостоятельной группой, что подтверждается рядом отличий в их строении и метаболизме: одни черты роднят их с бактериями, другие – с эукариотами, а некоторые являются совершенно уникальными. В частности, первые открытые археи отличаются своей удивительной способностью обитать в экстремальных местах обитания: при высоких температурах, давлении, сильнокислых или сильнощелочшых условиях среды. Например, большинство гипертермофильных архей растут при температуре 80 ℃, а Methanopyrus kandleri – при 122 ℃. Другой пример: рекордсмен среди устойчивых к кислой среде архей растет в условиях, эквивалентных 1,2 М серной кислоте. Для сравнения – содержание соляной кислоты в желудочном соке в норме составляет 0,14 – 0,16 М.
Рисунок 1. Группы микроорганизмов
ссылки
- Берг JM, Tymoczko JL, Страйер Л. (2002). биохимия. 5-е издание. Нью-Йорк: Ш Фриман. Раздел 29.3. Рибосома — это частица рибонуклеопротеина (70S), состоящая из небольшой (30S) и большой (50S) субъединиц. Доступно по адресу: ncbi.nlm.nih.gov
- Кертис Х. & Шнек А. (2006). Приглашение к биологии. Ed. Panamericana Medical.
- Fox, G.E. (2010). Происхождение и эволюция рибосомы. Перспективы Колд Спринг Харбор в биологии, 2(9), а003483.
- Холл, J.E. (2015). Гайтон и Холл, учебник по медицинской физиологии, электронная книга. Elsevier Health Sciences.
- Левин Б. (1993). Гены. Том 1. Реверте.
- Лодиш, Х. (2005). Клеточная и молекулярная биология. Ed. Panamericana Medical.
- Рамакришнан, В. (2002). Структура рибосомы и механизм трансляции. клетка, 108(4), 557-572.
- Tortora, G.J., Funke, B.R. & Case, C.L. (2007). Введение в микробиологию. Ed. Panamericana Medical.
- Wilson, D.N. & Cate, J.H.D. (2012). Структура и функция эукариотической рибосомы. Перспективы Колд Спринг Харбор в биологии, 4(5), a011536.
Обзор рибосом прокариот и эукариот[ | код]
Рибосомы существуют в клетках как про-, так и эукариот. Рибосомы бактерий, архей и эукариот в значительной степени похожи друг на друга, что свидетельствует об их общем происхождении.Также у клеток всех доменов по одной цепи мРНК одновременно может перемещаться более одной рибосомы (составляя полисому). Прокариотические и эукариотические рибосомы различаются по размеру, структуре, составу и соотношению белка и РНК.
Двумембранные органеллы эукариот (митохондрии и пластиды) обладают собственным белоксинтезирующим аппаратом, в который входят рибосомы, сходные с прокариотическими. Это является одним из доказательств симбиотической теории происхождения указанных органелл.
Различия в структуре прокариотических и эукариотических рибосом позволяют некоторым антибиотикам убивать бактерии, ингибируя их рибосомы и оставляя при этом человеческие рибосомы незатронутыми. Однако при этом они могут действовать на митохондриальные рибосомы.
Прокариотические рибосомы | код
Прокариотические рибосомы имеют диаметр около 20 нм (200 Å) и состоят из 65 % рРНК и 35 % рибосомальных белков, имеют коэффициент седиментации 70S, каждая рибосома состоит из малой (30S) и большой (50S) субъединиц.
Рибосомы архей имеют те же размеры, что и бактериальные (70S, состоящие из 50S большой субъединицы и 30S малой субъединицы). Однако по составу они гораздо ближе к эукариотическим, чем к бактериальным. Многие рибосомные белки архей имеет эукариотические, но не бактериальные аналоги.
Эукариотические рибосомы | код
Эукариотические рибосомы имеют диаметр от 25 до 30 нм (250-300 Å) с отношением рРНК к белку, близким к 1, имеют коэффициент седиментации 80S, каждая состоит из малой (40S) и большой (60S) субъединиц.
Миторибосомы и Пласторибосомы | код
У эукариот рибосомы присутствуют в митохондриях (миторибосомы) и в пластидах (пласторибосомы). Они также состоят из больших и малых субъединиц, связанных вместе с белками в одну частицу 70S. Эти рибосомы похожи на рибосомы бактерий. Из двух, ближе к бактериальным пласторибосомы. Многие фрагменты митохондриальных рРНК укорочены, а в случае 5S рРНК заменяется другими структурами у животных и грибов. В частности, Leishmania tarentolae имеет минимальный набор митохондриальной рРНК. Напротив, растительные миторибосомы имеют как расширенную рРНК, так и дополнительные белки по сравнению с бактериями, в частности, многие белки с пентатрикопетидным повтором.
Криптомонадные и хлорарахниофитные водоросли могут содержать нуклеоморф, напоминающий рудиментарное эукариотическое ядро. Эукариотические 80-е рибосомы могут присутствовать в отсеке, содержащем нуклеоморф.
Схема синтеза рибосом в клетках эукариот. 1. Синтез мРНК рибосомных белков РНК полимеразой II. 2. Экспорт мРНК из ядра. 3. Узнавание мРНК рибосомой и 4. синтез рибосомных белков. 5. Синтез предшественника рРНК (45S — предшественник) РНК полимеразой I. 6. Синтез 5S pРНК РНК полимеразой III. 7. Сборка большой рибонуклеопротеидной частицы, включающей 45S-предшественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участие в созревании рибосомных субчастиц. 8. Присоединение 5S рРНК, нарезание предшественника и отделение малой рибосомной субчастицы. 9. Дозревание большой субчастицы, высвобождение ядрышковых белков и РНК. 10. Выход рибосомных субчастиц из ядра. 11. Вовлечение их в трансляцию.
Основные признаки и отличия прокариотических и эукариотических клеток (таблица):
Признаки |
Прокариоты |
Эукариоты |
ЯДЕРНАЯ МЕМБРАНА |
Отсутствует |
Имеется |
ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА |
Имеется |
Имеется |
МИТОХОНДРИИ |
Отсутствуют |
Имеются |
ЭПС |
Отсутствует |
Имеется |
РИБОСОМЫ |
Имеются |
Имеются |
ВАКУОЛИ |
Отсутствуют |
Имеются (особенно характерны для растений) |
ЛИЗОСОМЫ |
Отсутствуют |
Имеются |
КЛЕТОЧНАЯ СТЕНКА |
Имеется, состоит из сложного гетерополимерного вещества |
Отсутствует в животных клетках, в растительных состоит из целлюлозы |
КАПСУЛА |
Если имеется, то состоит из соединений белка и сахара |
Отсутствует |
КОМПЛЕКС ГОЛЬДЖИ |
Отсутствует |
Имеется |
ДЕЛЕНИЕ |
Простое |
Митоз, амитоз, мейоз |
Основное отличие прокариотических клеток от эукариотических заключается в том, что их ДНК не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены значительно сложнее. Их ДНК, связанная с белком, организована в хромосомы, которые располагаются в особом образовании, по сути самом крупном органоиде клетки — ядре. Кроме того, внеядерное активное содержимое такой клетки разделено на отдельные отсеки с помощью эндоплазматической сети, образованной элементарной мембраной. Эукариотические клетки обычно крупнее прокариотических. Их размеры варьируют от 10 до 100 мкм, тогда как размеры клеток прокариот (различных бактерий, цианобактерий — сине- зеленых водорослей и некоторых других организмов), как правило, не превышают 10 мкм, часто составляя 2-3 мкм. В эукариотической клетке носители генов — хромосомы — находятся в морфологически оформленном ядре, отграниченном от остальной клетки мембраной. В исключительно тонких, прозрачных препаратах живые хромосомы можно видеть с помощью светового микроскопа. Чаще же их изучают на фиксированных и окрашенных препаратах.
Хромосомы состоят из ДНК, которая находится в комплексе с белками- гистонами, богатыми аминокислотами аргинином и лизином. Гистоны составляют значительную часть массы хромосом.
Эукариотическая клетка имеет разнообразные постоянные внутриклеточные структуры — органоиды (органеллы), отсутствующие в прокариотической клетке.
Прокариотические клетки могут делиться на равные части перетяжкой или почковаться, т.е. образовывать дочернюю клетку меньшего размера, чем материнская, но никогда не делятся путем митоза. Клетки эукариотических организмов, напротив, делятся путем митоза (исключая некоторые очень архаичные группы). Хромосомы при этом «расщепляются» продольно (точнее, каждая нить ДНК воспроизводит около себя свое подобие), и их «половинки» — хроматиды (полноценные копии нити ДНК) расходятся группами к противоположным полюсам клетки. Каждая из образующихся затем клеток получает одинаковый набор хромосом.
Рибосомы прокариотической клетки резко отличаются от рибосом эукариот по величине. Ряд процессов, свойственных цитоплазме многих эукариотических клеток, — фагоцитоз, пиноцитоз и циклоз (вращательное движение цитоплазмы) — у прокариот не обнаружен. Прокариотической клетке в процессе обмена веществ не требуется аскорбиновая кислота, но эукариотические не могут без нее обходиться.
Существенно различаются подвижные формы прокариотических и эукариотических клеток. Прокариоты имеют двигательные приспособления в виде жгутиков или ресничек, состоящих из белка флагеллина. Двигательные приспособления подвижных эукариотических клеток получили название ундулиподиев, закрепляющихся в клетке с помощью особых телец кинетосом. Электронная микроскопия выявила структурное сходство всех ундулиподиев эукариотических организмов и резкие их отличия от жгутиков прокариот