Биология. 11 класс

Вероятность отцовства

Вероятность отцовства в результате ДНК анализа указывается в процентах и вычисляется при помощи комбинированного индекса отцовства (CPI). Для того чтобы получить процент вероятности используется первоначальная вероятность отцовства равная 50%, которая считается нейтральным значением. Она указывает на то, что тестируемый мужчина с одинаковой вероятностью может быть и не быть отцом тестируемого ребенка

Результат ДНК анализа на отцовство может содержать только один из 2-х вариантов:

  • Вероятность отцовства = 0% — отцовство исключено.
  • Вероятность отцовства = 99,9999% — отцовство подтверждено.

Если вы провели ДНК тест на отцовство в другой лаборатории и получили результат в 40, 70, и даже 98%, то это повод усомниться в достоверности результата.

Что такое гены и какое отношение они имеют к заболеваниям?

Гены – группы белков, которые имеются в каждой клетке вашего организма. Гены находятся в хромосомах и контролируют процесс роста, а также помогают вам оставаться здоровым. Иногда, когда гены ненормальны или повреждены, они могут работать неправильно, а это может привести к различным заболеваниям. Некоторые генетические аномалии, или мутации, могут передаваться от поколения к поколению. Некоторые происходят случайно. Иногда всего одна мутация может вызвать заболевание, но большинство заболеваний, как правило, вызываются комбинациями генетических и природных факторов.

Что такое генетический тест?

Генетические тесты могут помочь выяснить, есть ли у вас какие-либо наследственные заболевания. Обычно для его проведения требуется образец кожи или крови. Тесты на выявление генетических мутаций постепенно становятся всё более доступными.

Что означает положительный результат теста?

Положительный результат теста означает, что у вас произошла мутация, на которую вас тестировали. Если результат вашего теста оказался положительным, то это означает, что у вас выше риск заболеть тем или иным заболеванием, чем у большинства людей, но это не означает, что вы обязательно им заболеете.

Что означает отрицательный результат теста?

Отрицательный результат теста означает, что у вас не произошла та или иная мутация. Это означает, что данное заболевание в вашей семье не является наследственным. Отрицательный результат теста не означает, что вы не переболеете тем или иным заболеванием. Это означает лишь, что у вас ниже риск им заболеть, чем у других людей.

Кому следует пройти такой тест?

Изучив историю вашей семьи, ваш врач сможет сказать, возможно ли такое, что у вас есть генетическая мутация, которая может привести к заболеванию. Данное заболевание может оказаться в вашей семье наследственным, если кровный родственник перенёс его в раннем возрасте или если его перенесли большинство членов вашей семьи. Люди отдельных этнических групп могут быть также склонны к конкретным заболеваниям. Если у кого-то из членов вашей семьи уже есть такое заболевание, то он должен пройти тест в первую очередь. Это поможет узнать, какие гены, если таковые есть, имеют отношение к данному заболеванию.

Как мне определить, нужно ли мне пройти тест?

Если вам кажется, что у вас, возможно, есть наследственные заболевания, поговорите со своим семейным врачом. Ваш доктор задаст вам несколько вопросов о вашем здоровье и здоровье ваших кровных родственников. Эта информация поможет вашему врачу определить, каков ваш риск в данном случае. То, что об этом ваш доктор расскажет вам, поможет вам решить, нужно ли вам проходить этот тест.

Почему вероятность отцовства 99,99999%, а не 100%?

Каждый человек обладает миллионами генетических маркеров, но тестирование всего генома процедура крайне дорогостоящая и гораздо более трудоемкая (такой анализ занимал бы не недели, а месяцы и стоил бы не менее 10 000 долларов). Для определения отцовства нет необходимости проводить полное тестирование генома, чтобы сделать достоверные выводы, лаборатории достаточно сравнить 15-17 генетических маркеров.

Однако, полностью исключить возможность идентичности ДНК тестируемого отца с неким другим мужчиной невозможно, так как всемирной ДНК базы по всему человечеству не существует. Именно по этой причине в результате ДНК теста на отцовства и не указывается 100% вероятность.

Интерпретация таблицы в результате ДНК анализа на отцовство

В локусах (увеличиваемых фрагментах ДНК) содержатся короткие тандемные повторы (STR). Количество этих повторов и наследуется от родителей. У каждого человека присутствует 2 аллели (альтернативные формы ДНК, имеющие различные повторы), одна из них наследуется от матери, вторая — от отца.
Именно аллели сравниваются в процессе ДНК анализа, в таблице результата они указаны в как числа и обозначают количество обнаруженных повторов. Если от обоих родителей наследуется одинаковая аллель, то в результат выносится одно число. Например, в локусе D13S1358 значения аллелей у ребенка 16 и 18, то есть 18 унаследовал от отца.
Если от обоих родителей наследуется одинаковая аллель, то в результат выносится одно число. Например, в локусе vWA значения аллелей у ребенка 17 и 17, от обоих родителей унаследовал 17, и обозначается в таблице одним числом 17.

1. Перечень сравниваемых локусов
2. Наследование одинаковой аллели от матери и от отца.

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот. Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза. Кроме того, был сделан акцент на то, что конкретная последовательность оснований – это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки. В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и «дырами», имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим. Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

Показания к кариотипированию

Такую процедуру желательно пройти любой паре, планирующей обзаводиться потомством, но существуют случаи, когда кариотипирование особенно необходимо:

  • Мужское и женское бесплодие. У таких пациентов могут обнаруживаться аномалии в половой хромосоме.
  • Первичная аменорея – отсутствие месячных в течение всей жизни. Такое нарушение бывает связано с поломкой в половых хромосомах.
  • Недоразвитие репродуктивных органов также может быть обусловлено неблагоприятной генетикой.
  • Выкидыши, замирания беременностей, неудачные попытки ЭКО. Зародыши, имеющие генетические аномалии, не развиваются и отторгаются организмом. Генетическое обследование позволит выявить причину такой ситуации и избежать рождения нездорового потомства.
  • Мертворождение – появление на свет детей с множественными пороками, которые могут быть вызваны тяжелыми наследственными патологиями.
  • Подготовка к ЭКО – в этом случае также нужно провериться на генетические отклонения, чтобы выбрать наиболее подходящую репродуктивную технологию. Парам с генетическими нарушениями, приводящими к рождению больных детей, рекомендуется сделать ЭКО с предимплантационной диагностикой эмбриона. В этом случае зародыши перед подсадкой проверяют на хромосомные болезни.

Анализ делают и детям при подозрении на наследственные патологии. Показанием к его проведению являются:

  • Врожденные пороки развития.
  • Необычная внешность.
  • Странное поведение, умственная отсталость, задержка развития.
  • Нарушение обмена веществ и функции внутренних органов.
  • Неправильно развитый половой аппарат. Иногда только генетический анализ может определить пол ребенка.

В некоторых случаях у детей и взрослых обнаруживается так называемый мозаицизм. При этом нарушении одна часть клеток имеет нормальный набор хромосом, а другая – изменённый. Например, пациенты с мозаичным синдромом Дауна могут иметь достаточно гармоничную внешность и практически не отличаться от здоровых людей.

Как кодируются аминокислоты нуклеотидами

1) Нуклеиновые кислоты (ДНК и РНК) — это полимеры, состоящие из нуклеотидов. В каждый нуклеотид может входить одно из четырех азотистых оснований: аденин (А, еn: A), гуанин (Г, G), цитозин (Ц, en: C), тимин (T, en: Т). В случае РНК тимин заменяется на урацил (У, U).

При рассмотрении генетического кода принимают во внимание только азотистые основания. Тогда цепочку ДНК можно представить в виде их линейной последовательности

Например:

…AAATGAACTTCA…

Комплиментарный данному коду участок иРНК будет таким:

…UUUACUUGAAGU…

2) Белки (полипептиды) — это полимеры, состоящие из аминокислот. В живых организмах для построения полипептидов используется 20 аминокислот (еще несколько очень редко). Для их обозначения тоже можно использовать одну букву (хотя чаще используют три — сокращение от названия аминокислоты).

Аминокислоты в полипептиде соединены между собой пептидной связью также линейно. Например, пусть имеется участок белка со следующей последовательностью аминокислот (каждая аминокислота обозначается одной буквой):

…MLFRSRWIMVPQHE…

3) Если стоит задача закодировать каждую аминокислоту с помощью нуклеотидов, то она сводится к тому, как с помощью 4 букв закодировать 20 букв. Это можно сделать, сопоставляя буквам 20-ти буквенного алфавита слова, составленные из нескольких букв 4-х буквенного алфавита.

Если одну аминокислоту кодировать одним нуклеотидом, то можно закодировать только четыре аминокислоты.

Если каждой аминокислоте сопоставлять два подряд идущих в цепи РНК нуклеотида, то можно закодировать шестнадцать аминокислот. Действительно, если имеется четыре буквы (A, U, G, C), то количество их разных парных комбинаций будет 16: (AU, UA), (AG, GA), (AC, CA), (UG, GU), (UC, CU), (GC, CG), (AA, UU, GG, CC). Это значит, что таким кодом (двухбуквенным словом) можно закодировать только 16 разных аминокислот: каждой будет соответствовать свое слово (два подряд идущих нуклеотида).

Из математики формула, позволяющая определить количество комбинаций, выглядит так: ab = n. Здесь n — количество разных комбинаций, a — количество букв алфавита (или основание системы счисления), b — количество букв в слове (или разрядов в числе). Если подставить в эту формулу 4-х буквенный алфавит и слова, состоящие из двух букв, то получим 42 = 16.

Если в качестве кодового слова каждой аминокислоты использовать три подряд идущих нуклеотида, то можно закодировать 43 = 64 разных аминокислот, так как 64 разных комбинации можно составить из четырех букв, взятых по три (например, AUG, GAA, CAU, GGU и т. д.). Это уже больше, чем достаточно для кодирования 20 аминокислот.

Именно трехбуквенный код используется в генетическом коде. Три подряд идущих нуклеотида, кодирующих одну аминокислоту, называются триплетом (или кодоном).

Каждой аминокислоте сопоставляется определенный триплет нуклеотидов. Кроме того, поскольку комбинаций триплетов с избытком перекрывают количество аминокислот, то многие аминокислоты кодируются несколькими триплетами.

Три триплета не кодируют ни одну из аминокислот (UAA, UAG, UGA). Они обозначают конец трансляции и называются стоп-кодонами (или нонсенс-кодонами).

Триплет AUG кодирует не только аминокислоту метионин, но и инициирует трансляцию (играет роль старт-кодона).

Ниже приведены таблицы соответствия аминокислот триплетам нуклеоитидов. По первой таблице удобно определять по заданному триплету соответствующую ему аминокислоту. По второй — по заданной аминокислоте соответствующие ей триплеты.

Рассмотрим пример реализации генетического кода. Пусть имеется иРНК со следующим содержанием:

AUGGAUUCUACCUGGUUAUUGAAAAAUCAGUAG

Разобьем последовательность нуклеотидов на триплеты:

AUG-GAU-UCU-ACC-UGG-UUA-UUG-AAA-AAU-CAG-UAG

Сопоставим каждому триплету кодируемую им аминокислоту полипептида:

Метионин — Аспаргиновая кислота — Серин — Треонин — Триптофан — Лейцин — Лейцин — Лизин — Аспарагин — Глутамин

Последний триплет является стоп-кодоном.

Что может повлиять на результат ДНК анализа на отцовство?

Близкое родство предполагаемых отцов – такая ситуация достаточно распространена, если о близком родстве известно, об этом обязательно нужно сообщать лаборатории и лучше проводить анализ с участием всех предполагаемых отцов. Если анализ с участием второго предполагаемого отца невозможен, то проводится расширенный анализ, до 33 локусов, в котором рассчитывается вероятность отцовства второго отца-родственника, без необходимости его участия.

Повреждение/загрязнение ДНК образца – в каких случаях это может произойти. Забор буккального мазка необходимо проводить обязательно при чистой ротовой полости, за час до забора исключается употребление пищи и каких либо напитков, кроме чистой воды. Мелкие загрязнения в виде частичек бытовой или бумажной пыли игнорируются лабораторией при проведении ДНК анализа и никак не влияют на результат. Однако, если образец будет поврежден плесенью от хранения во влажном виде в полиэтилене, или смешан с образцом другого человека, то лаборатория просто не сможет выделить ДНК из предоставленного материала и запросит пересдачу, то есть, сроки получения результата анализа ДНК на отцовство будут перенесены с учетом нового времени сдачи образцов.

Переливание крови и пересадка костного мозга также не влияют на точность ДНК анализа, так как ДНК человека не может кардинально измениться в течении жизни. Однако, данные ситуации имеют некоторые ограничения. После проведения подобных процедур некоторое время человек может иметь смешанную ДНК и для того, чтобы не запрашивать пересдачи, лаборатория просит проводить ДНК анализы на отцовство по прошествии 3-х месяцев.

Терминология

Генетический код – это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки – природные органические вещества с высокой молекулярностью. Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства. Встречается также несколько цепочек аминокислот в белке.

Как наследуются хромосомные патологии

Эти заболевания детям передаются от родителей, хромосомы которых имеют измененные участки. Причем в большинстве случаев мама и папа даже не знает о существовании у них особенности, которая однажды дает о себе знать рождением больного ребенка. Чтобы выяснить причины этого явления, нужно понять, как происходит наследование болезней.

Существует несколько вариантов передачи таких заболеваний:

  • Аутосомно-доминантный, при котором патология возникает, если хотя бы у одного родителя есть дефектный ген. Вероятность рождения больного ребёнка в этой паре составляет 50%. Пример – хорея Хантингтона, при которой наблюдаются непроизвольные движения и судороги.
  • Аутосомно-рецессивный – вариант, при котором больной ребенок появится, если одинаковый «дефектный» ген есть у обоих родителей. К этой группе относится большое количество заболеваний, при которых поражается нервная система, обмен веществ или наблюдается неправильное развитие органов.
  • Кодоминантный – в этом случае нарушение проявляется частично. Например, такой болезнью является серповидно-клеточная анемия, при которой красные кровяные клетки имеют форму серпа и не могут полноценно переносить кислород к тканям. У ребёнка с кодоминантным типом болезни в крови обнаруживаются как нормальные эритроциты, так и измененные.
  • Сцепленный с полом. Такими недугами страдают только мальчики или девочки. Самый известный вариант – гемофилия, при которой не сворачивается кровь. Заболевание наблюдалось у сына последнего российского императора и у многих европейских королей и царей. Женщины являются только носителями – болезнь у них не проявляется.

Во всех случаях родители могут быть вполне здоровы и даже не знать о своей генетической особенности. Поэтому выявить нарушение можно только с помощью анализа.

Индекс отцовства

Параметр «Индекс отцовства» (в таблице – PI) отображает генетические шансы подтверждения биологического отцовства. Рассчитывается индекс отцовства отдельно для каждого тестируемого локуса и определяется как вероятность того, что ребенком унаследована обязательная аллель предполагаемого отца, а не случайного не тестируемого мужчины.

Комбинированный индекс отцовства – CPI вычисляется путем умножения индивидуальных PI. К примеру, CPI = 100 000, это значит, что вероятность того, что тестируемый мужчина является биологическим отцом, тестируемого ребенка в 100 000 раз выше, чем вероятность на отцовство другого случайного мужчины.

PI в локусах, не имеющих совпадения, равен нулю! Если несовпадение присутствует в 3-х и более локусах, то CPI также равен нулю! Иногда в результате теста может присутствовать несовпадение в 1 или 2 локусах, причиной этому могут быть мутации, близкая родственная связь биологического отца и предполагаемого тестироемого отца (брат, отец и сын). В таком случае, проводится расширенный ДНК анализ с дополнительными расчетами и рекомендацией к участию всех возможных биологических отцов.

Как проводится анализ ДНК на отцовство?

Стандартный материал для проведения данного анализа – это буккальный эпителий, то есть эпителий, который находится в ротовой полости человека. Хотя для проведения ДНК анализа пригоден практически любой биологический материал, содержащий в себе клетки человеческого организма. Буккальный мазок является самым быстрым, безболезненным и доступным для правильного самостоятельного забора способом получения ДНК материала.

Дезоксирибонуклеиновая кислота или ДНК – генетический материал, содержащийся в клетках нашего тела и состоящий наполовину из ДНК матери и на вторую половину — из ДНК отца. ДНК тест представляет собой глубокий анализ генетических данных матери, ребенка и предполагаемого отца.

ДНК тест на отцовство проводится путем анализа ПРЦ (полимеразной цепной реакции). Последний основан на принципах молекулярной биологии, выполняется с применением особых ферментов, многократно увеличивающих фрагменты ДНК (локусы), позволяя тем самым проводить точную сверку биологических материалов.

Точность такого анализа максимально высокая, именно потому, на данный момент это основной метод установления биологического отцовства. Качественно проведенный ПРЦ анализ не допускает двусмысленного трактования. При его использовании анализы проведенные в двух различных лабораториях в различное время обязательно совпадут!

Можно ли подделать результат ДНК анализа на отцовство?

Если анализ проводится для личного пользования и забор материала клиент производит самостоятельно, то мы полагаемся на ответственность и честность самих участников, и принимаем готовые ДНК образцы считая, что они принадлежат личностям, заявленным для тестирования.

Лаборатория может обнаружить подмену ДНК образцов, но только в том случае, если пол заявленных участников не будет совпадать с полом, обнаруженным в предоставленных ДНК материалах, или если два ДНК-профиля будут одинаковы.

Пол участников также указывается в таблице результата ДНК анализа на отцовство.

Если забор проведен честно, то анализ имеет 100% точный результат!

Как проводится анализ

Для исследования берется кровь, из которой извлекаются кровяные клетки – лимфоциты. Затем из них отбираются те, которые находятся в состоянии деления (митоза). После этого в течение трех суток на образец воздействуют специальным раствором, усиливающим деление клеток, и наблюдают за этим процессом.

В определенный момент образцы изымают и окрашивают, чтобы хорошо рассмотреть хромосомный набор. Каждый участок хромосом обследуется и изучается на предмет возможных «поломок». Существует несколько вариантов таких сбоев:

  • Дисомия – удвоение хромосомы – и трисомия – утроение.
  • Моносомия – утрата одной половинки из сестринской пары.
  • Делеция – отсутствие части хромосомы, иногда достаточно большой ее части.
  • Дупликация – удвоение какого-то фрагмента.
  • Инверсия – поворот части хромосомы на 180 градусов.
  • Транслокация – аномалия, при которой участки хромосомы меняются местами.

Такие мутации у их обладателей имеют разные внешние проявления – от незаметных до вызывающих тяжелые болезни, сопровождающиеся умственной отсталостью и нарушением физического развития.

Как раскрыть генетический код?

Как вы могли уже догадаться из всего вышесказанного, генетический код всех живых существ на планете уже разгадан. Более того, детальное исследование генома того или иного человека в настоящее время может сделать любой желающий, в чьем кармане имеются лишние 100 долларов. Такое исследование может помочь выявить риски наследственных заболеваний, узнать свое этническое происхождение и даже найти дальних родственников. Наиболее известными компаниями, которые предлагают сделать лабораторный анализ вашего биологического материала, считаются National Geographic, My Heritage и Ancestry DNA. Расценки на исследование вашего личного генома могут варьироваться в зависимости от вида выбранного вами теста и страны, которая предоставит вам возможность пройти данный генетический эксперимент.

Так, ряд российских компаний предлагает тесты с расценками, начинающимися от 1200 рублей. С их помощью вы можете узнать об уровне рекомендуемой лично вам физической активности, подобрать оптимальную диету и даже узнать, сколько чашек кофе в день вы можете выпить без вреда для здоровья. Если же вам необходимо узнать что-то помасштабнее, то вам могут быть предложены тесты на определение вероятности появления у вас тех или иных заболеваний, а также вашей этнической принадлежности. Как уже говорилось ранее, прохождение данных тестов сильно варьируется в цене в зависимости от вашего места рождения. Так, если в США расценки начинаются от 100 долларов, то большинство компаний РФ предлагают пройти аналогичный тест с ценами в пределах 20-30 тысяч рублей.

Тест, направленный на исследование вашего генома, может найти ваших родственников из самых удаленных уголков планеты

Как кариотипирование по лимфоцитам выявляет наследственные болезни

Человеческий организм состоит из клеток, каждая из которых содержит ядро, в котором находятся хромосомы. В норме их 23 пары, одна половина из которых достается от мамы, а вторая – от папы. Хромосома напоминает по форме неровную букву Х с различающейся верхней и нижней частью.

Верхняя и нижняя часть хромосомы состоит из двух одинаковых частей – сестринских хроматид, имеющих в норме одинаковое строение. Они образуют плечи, соединенные перетяжкой – центромерой. Одно плечо у хромосомы короткое, другое – длинное.

Мужской и женский хромосомный набор отличаются всего одной хромосомой: Y – у мужчин и X – у женщин, которые определяют пол.

Совокупность хромосомных признаков называется кариотипом, а определение его особенностей – кариотипированием. При этом исследовании определяется число и строение хромосом, а также выявляются различные отклонения, приводящие к врожденным патологиям.

Свойства генетического кода

Свойства генетического кода во многом являются следствием способа кодирования аминокислот.

Первое и очевидное свойство — это триплетность. Под ним понимают тот факт, что единицей кода является последовательность из трех нуклеотидов.

Важным свойством генетического кода является его неперекрываемость. Нуклеотид, входящий в один триплет, не может входить в другой. То есть последовательность AGUGAA можно прочитать только как AGU-GAA, но нельзя, например, так: AGU-GUG-GAA. Т. е. если пара GU входит в один триплет, она не может уже быть составной частью другого.

Под однозначностью генетического кода понимают то, что каждому триплету соответствует только одна аминокислота. Например, триплет AGU кодирует аминокислоту серин и больше никакую другую. Данному триплету однозначно соответствует только одна аминокислота.

С другой стороны, одной аминокислоте может соответствовать несколько триплетов. Например, тому же серину, кроме AGU, соответствует кодон AGC. Данное свойство называется вырожденностью генетического кода. Вырожденность позволяет оставлять многие мутации безвредными, так как часто замена одного нуклеотида в ДНК не приводит к изменению значения триплета. Если внимательно посмотреть на таблицу соответствия аминокислот триплетам, то можно увидеть, что, если аминокислота кодируется несколькими триплетами, то они зачастую различаются последним нуклеотидом, т. е. он может быть любым.

Также отмечают некоторые другие свойства генетического кода (непрерывность, помехоустойчивость, универсальность и др.).

Вариации

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов. К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом. Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК. В настоящее время селеноцистеин считается 21-ой, пирролизан – 22-ой аминокислотой, присутствующей в составе белков.

Что такое генетический код

Генетический, или биологический, код является одним из универсальных свойств живой природы, доказывающим единство ее происхождения. Генетический кодэто способ кодирования последовательности аминокислот полипептида с помощью последовательности нуклеотидов нуклеиновой кислоты (информационной РНК или комплиментарного ей участка ДНК, на котором синтезируется иРНК).

Встречаются другие определения. Генетический код — это соответствие каждой аминокислоте (входящей в состав белков живого) определенной последовательности трех нуклеотидов. Генетический код — это зависимость между основаниями нуклеиновых кислот и аминокислотами белка.

В научной литературе под генетическим кодом не понимают последовательность нуклеотидов в ДНК у какого-либо организма, определяющую его индивидуальность. Неверно считать, что у одного организма или вида код один, а у другого — другой. Генетический код — это то, как кодируются аминокислоты нуклеотидами (т. е. принцип, механизм); он универсален для всего живого, одинаков для всех организмов. Поэтому некорректно говорить, например, «Генетический код человека» или «Генетический код организма», что нередко используется в околонаучной литературе и фильмах. В данных случаях обычно имеется в виду геном человека, организма и др.

Разнообразие живых организмов и особенностей их жизнедеятельности обусловлено в первую очередь разнообразием белков. Специфическое строение белка определяется порядком и количеством различных аминокислот, входящих в его состав. Последовательность аминокислот пептида зашифрована в ДНК с помощью биологического кода. С точки зрения разнообразия набора мономеров, ДНК более примитивная молекула, чем пептид. ДНК представляет собой различные варианты чередования всего четырех нуклеотидов. Это долгое время мешало исследователям рассматривать ДНК как материал наследственности.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: