Как складывать квадратные корни

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

Можно было пойти по иному пути и разложить на другие множители:

Что дальше? А дальше раскладываем на множители до самого конца:

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

Разве это конец? Не останавливаемся на полпути!

На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:

Вот и все, не так все и страшно, правда?

Получилось \( \displaystyle   90\)? Молодец, все верно!

А теперь попробуй вот такой пример решить:

Сравнение корней

Зачем нам учиться сравнивать числа, содержащие квадратный корень?

Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!)

Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!

Например, определи, что больше: \( \displaystyle   3\sqrt{7}\) или \( \displaystyle   2\sqrt{17}\)?

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?

Тогда вперед:

Ну и, очевидно, что чем больше число под знаком корня, тем больше сам корень!

Т.е. если \( \displaystyle 68>63\), значит, \( \displaystyle   \sqrt{68}>\sqrt{63}\).

Отсюда твердо делаем вывод, что \( \displaystyle   3\sqrt{7}<2\sqrt{17}\).

Извлечение корней

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать.

Для этого необходимо знать, по меньшей мере, квадраты чисел от \( \displaystyle 1\) до \( \displaystyle 20\), а также уметь их распознавать.

То есть, тебе необходимо знать, что \( \displaystyle 15\) в квадрате равно \( \displaystyle 225\), а также, наоборот, что \( \displaystyle 225\) – это \( \displaystyle 15\) в квадрате.

Первое время в извлечении корня тебе поможет эта таблица.

Как только ты прорешаешь достаточное количество примеров, то надобность в ней автоматически отпадет.

Попробуй самостоятельно извлечь квадратный корень в следующих выражениях:

  • \( \sqrt{0}=?\);
  • \( \sqrt{64}=?\);
  • \( \sqrt{121}=?\);
  • \( \sqrt{289}=?\);

Ответы:

  • \( \displaystyle 0\);
  • \( \displaystyle 8\);
  • \( \displaystyle 11\);
  • \( \displaystyle 17\);

Ну как, получилось? Теперь давай посмотрим такие примеры:

  • \( \sqrt{0,0196}=?\);
  • \( \sqrt{0,0961}=?\);
  • \( \sqrt{0,0144}=?\).

Ответы:

  • \( \displaystyle 0,14\);
  • \( \displaystyle 0,31\);
  • \( \displaystyle 0,12\);

Запись иррациональных чисел с помощью квадратного корня

А теперь попробуй решить такое уравнение \( {{x}^{2}}=3\).

Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля: \( {{0}^{2}}=0\) – не подходит.

Двигаемся дальше \( \displaystyle x=1\); \( \displaystyle {{1}^{2}}=1\) – меньше трех, тоже отметаем.

А что если \( \displaystyle x=2\)? 

Проверим: \( \displaystyle {{2}^{2}}=4\) – тоже не подходит, т.к. это больше трех.

С отрицательными числами получится такая же история.

И что же теперь делать? Неужели перебор нам ничего не дал?

Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между \( \displaystyle 1\) и \( \displaystyle 2\), а также между \( \displaystyle -2\) и \( \displaystyle -1\).

Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными.

И что дальше?

Давай построим график функции \( \displaystyle y={{x}^{2}}\) и отметим на нем решения.

Попробуем обмануть систему и получить ответ с помощью калькулятора (как мы это делали в начале)!

Извлечем корень из \( \displaystyle 3\), делов-то!

Ой-ой-ой, выходит, что \( \sqrt{3}=1,732050807568\ldots \) Такое число никогда не кончается.

Как же такое запомнить, ведь на экзамене калькулятора не будет!?

Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. \( \sqrt{3}\) и \( -\sqrt{3}\) уже сами по себе ответы.

Теперь к правилам

  1. Найти и сгруппировать подобные корни. То есть те, у которых не только стоят одинаковые числа под радикалом, но и они сами с одним показателем.
  2. Выполнить сложение корней, объединенных в одну группу первым действием. Оно легко осуществимо, потому что нужно только сложить значения, которые стоят перед радикалами.
  3. Извлечь корни в тех слагаемых, в которых подкоренное выражение образует целый квадрат. Другими словами, не оставлять ничего под знаком радикала.
  4. Упростить подкоренные выражения. Для этого нужно разложить их на простые множители и посмотреть, не дадут ли они квадрата какого-либо числа. Понятно, что это справедливо, если речь идет о квадратном корне. Когда показатель степени три или четыре, то и простые множители должны давать куб или четвертую степень числа.
  5. Вынести из-под знака радикала множитель, который дает целую степень.
  6. Посмотреть, не появилось ли опять подобных слагаемых. Если да, то снова выполнить второе действие.

В ситуации, когда задача не требует точного значения корня, его можно вычислить на калькуляторе. Бесконечную десятичную дробь, которая высветится в его окошке, округлить. Чаще всего это делают до сотых. А потом выполнять все операции для десятичных дробей.

Рекомендация: после разложения на простые множители нужно сделать проверку. То есть умножить их друг на друга и проверить, получается ли исходное значение.

Это вся информация о том, как выполняется сложение корней. Примеры, расположенные ниже, проиллюстрируют вышесказанное.

Что такое арифметический квадратный корень

А почему же число  \( a\) (число под корнем) должно быть обязательно неотрицательным?

Например, чему равен \( \sqrt{-9}\)?

Так-так, попробуем подобрать. Может, три?

Проверим: \( {{3}^{2}}=9\), а не \( -9\).

Может, \( \left( -3 \right)\)? 

Опять же, проверяем: \( {{\left( -3 \right)}^{2}}=9\).

Ну что же, не подбирается?

Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число! Это надо запомнить!

Однако ты наверняка уже заметил, что не только число под корнем должно быть неотрицательным, но и само значение тоже должно быть неотрицательным!

 Ведь в определении сказано, что «квадратным корнем из числа\( a\)называется такое неотрицательное число, квадрат которого равен\( a\)».

Но подождите!  В самом начале мы разбирали пример \( {{x}^{2}}=4\) и один из ответов был отрицательным числом! 

 Мы подбирали числа, которые можно возвести в квадрат и получить при этом \( \displaystyle 4\). Ответом были \( \displaystyle 2\) и \( \displaystyle -2\)

А тут говорится, что квадратным корнем должно быть «неотрицательное число»! Почему?

Такой вопрос вполне уместен. Здесь необходимо просто разграничить понятия квадратного уравнения и арифметического квадратного корня.

К примеру, \( \displaystyle {{x}^{2}}=4\) (квадратное уравнение) не равносильно выражению \( x=\sqrt{4}\) (арифмитический квадратный корень).

Из \( {{x}^{2}}=4\) следует, что

\( \left| x \right|=\sqrt{4}\), то есть \( x=\pm \sqrt{4}=\pm 2\) или \( {{x}_{1}}=2\); \( {{x}_{2}}=-2\)

(не помнишь почему так? Почитай тему «Модуль числа»!)

А из \( x=\sqrt{4}\) следует, что \( x=2\).

Конечно, это очень путает, но это необходимо запомнить, что знаки «плюс-минус» являются результатом решения квадратного уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.

В наше квадратное уравнение подходит как \( 2\), так и \( x=-2\).

Свойства арифметического квадратного корня

Теперь ты знаешь, как извлекать корни и пришло время узнать о свойствах арифметического квадратного корня. Их всего 3:

  • умножение;
  • деление;
  • возведение в степень.

Их ну просто очень легко запомнить с помощью этой таблицы и, конечно же, тренировки:

СВОЙСТВО ПРИМЕР
Корень произведения равен произведению корней:  \( \displaystyle \sqrt{ab}=\sqrt{a}\cdot \sqrt{b}\) \( \displaystyle \sqrt{64\cdot 9}=\sqrt{64}\cdot \sqrt{9}=8\cdot 3=24\)
Корень из дроби — это корень из числителя и корень из знаменателя: \( \displaystyle \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}\), если \( \displaystyle a\ge 0\ ,\ b > 0\) \( \displaystyle \sqrt{\frac{64}{9}}=\frac{\sqrt{64}}{\sqrt{9}}=\frac{8}{3}=2\frac{2}{3}\)
Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение: \( \displaystyle {{\left( \sqrt{a} \right)}^{n}}={{\left( \sqrt{{{a}^{n}}} \right)}^{{}}}\), при \( \displaystyle a\ge 0\) \( \displaystyle {{\left( \sqrt{2} \right)}^{4}}=\sqrt{{{2}^{4}}}=\sqrt{16}=4\)

Внесение под знак корня

Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня!

Это совсем легко!

Допустим, у нас записано число \( \displaystyle   3\sqrt{5}\)

Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка – корень квадратный из \( \displaystyle   9\)!

Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак квадратного корня мы можем только положительные числа.

Реши самостоятельно вот этот пример — \( \displaystyle   4\sqrt{6}-2\sqrt{3}\cdot \sqrt{8}\)

Справился? Давай смотреть, что у тебя должно получиться:

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: