Свойства трапеции, вписанной в окружность
Раз уже речь зашла о вписанной в окружность трапеции, остановимся на этом вопросе подробней. В частности на том, где находится центр окружности по отношению к трапеции. Тут тоже рекомендуется не полениться взять карандаш в руки и начертить то, о чем пойдет речь ниже. Так и поймете быстрее, и запомните лучше.
- Расположение центра окружности определяется углом наклона диагонали трапеции к ее боковой стороне. Например, диагональ может выходить из вершины трапеции под прямым углом к боковой стороне. В таком случае большее основание пересекает центр описанной окружности точно посередине (R = ½АЕ).
- Диагональ и боковая сторона могут встречаться и под острым углом – тогда центр окружности оказывается внутри трапеции.
- Центр описанной окружности может оказаться вне пределов трапеции, за большим ее основанием, если между диагональю трапеции и боковой стороной – тупой угол.
- Угол, образованный диагональю и большим основанием трапеции АКМЕ (вписанный угол) составляет половину того центрального угла, который ему соответствует:МАЕ = ½МОЕ
. - Коротко про два способа найти радиус описанной окружности. Способ первый: посмотрите внимательно на свой чертеж – что вы видите? Вы без труда заметите, что диагональ разбивает трапецию на два треугольника. Радиус можно найти через отношение стороны треугольника к синусу противолежащего угла, умноженному на два. Например, R = АЕ/2*sinАМЕ
. Аналогичным образом формулу можно расписать для любой из сторон обоих треугольников. - Способ второй: находим радиус описанной окружности через площадь треугольника, образованного диагональю, боковой стороной и основанием трапеции: R = АМ*МЕ*АЕ/4*S АМЕ
.
Примеры задач
№ 1. Условие. Известен угол между диагоналями произвольной трапеции, он равен 30 градусам. Меньшая диагональ имеет значение 3 дм, а вторая больше ее в 2 раза. Необходимо посчитать площадь трапеции.
Решение. Для начала нужно узнать длину второй диагонали, потому что без этого не удастся сосчитать ответ. Вычислить ее несложно, 3 * 2 = 6 (дм).
Теперь нужно воспользоваться подходящей формулой для площади:
S = ((3 * 6) / 2) * sin 30º = 18/2 * ½ = 4,5 (дм2). Задача решена.
Ответ: площадь трапеции равна 4,5 дм2.
№ 2. Условие. В трапеции АВСД основаниями являются отрезки АД и ВС. Точка Е — середина стороны СД. Из нее проведен перпендикуляр к прямой АВ, конец этого отрезка обозначен буквой Н. Известно, что длины АВ и ЕН равны соответственно 5 и 4 см. Нужно вычислить площадь трапеции.
Решение. Для начала нужно сделать чертеж. Поскольку значение перпендикуляра меньше стороны, к которой он проведен, то трапеция будет немного вытянутой вверх. Так ЕН окажется внутри фигуры.
Чтобы отчетливо увидеть ход решения задачи, потребуется выполнить дополнительное построение. А именно, провести прямую, которая будет параллельна стороне АВ. Точки пересечения этой прямой с АД — Р, а с продолжением ВС — Х. Получившаяся фигура ВХРА — параллелограмм. Причем его площадь равна искомой. Это связано с тем, что треугольники, которые получились при дополнительном построении, равны. Это следует из равенства стороны и двух прилежащих к ней углов, один — вертикальный, другой — накрест лежащий.
Найти площадь параллелограмма можно по формуле, которая содержит произведение стороны и высоты, опущенной на нее.
Таким образом, площадь трапеции равна 5 * 4 = 20 см2.
Ответ: S = 20 см2.
№ 3. Условие. Элементы равнобедренной трапеции имеют такие значения: нижнее основание — 14 см, верхнее — 4 см, острый угол — 45º. Нужно вычислить ее площадь.
Решение. Пусть меньшее основание имеет обозначение ВС. Высота, проведенная из точки В, будет называться ВН. Поскольку угол 45º, то треугольник АВН получится прямоугольный и равнобедренный. Значит, АН=ВН. Причем АН очень легко найти. Она равна половине разности оснований. То есть (14 — 4) / 2 = 10 / 2 = 5 (см).
Основания известны, высота сосчитана. Можно пользоваться первой формулой, которая здесь была рассмотрена для произвольной трапеции.
S = ((14 + 4) / 2) * 5 = 18/2 * 5 = 9 * 5 = 45 (см2).
Ответ: Искомая площадь равна 45 см2.
№ 4. Условие. Имеется произвольная трапеция АВСД. На ее боковых сторонах взяты точки О и Е, так что ОЕ параллельна основанию АД. Площадь трапеции АОЕД в пять раз больше, чем у ОВСЕ. Вычислить значение ОЕ, если известны длины оснований.
Решение. Потребуется провести две параллельные АВ прямые: первую через точку С, ее пересечение с ОЕ — точка Т; вторую через Е и точкой пересечения с АД будет М.
Пусть неизвестная ОЕ=х. Высота меньшей трапеции ОВСЕ — н1, большей АОЕД — н2.
Поскольку площади этих двух трапеций соотносятся как 1 к 5, то можно записать такое равенство:
(х + а2) * н1 = 1/5 (х + а1) * н2
или
н1 /н2 = (х + а1) / (5(х + а2)).
Высоты и стороны треугольников пропорциональны по построению. Поэтому можно записать еще одно равенство:
н1 /н2 = (х — а2) / (а1 — х).
В двух последних записях в левой части стоят равные величины, значит, можно написать, что (х + а1) / (5(х + а2)) равно (х — а2) / (а1 — х).
Здесь требуется провести ряд преобразований. Сначала перемножить крест накрест. Появятся скобки, которые укажут на разность квадратов, после применения этой формулы получится короткое уравнение.
В нем нужно раскрыть скобки и перенести все слагаемые с неизвестной «х» в левую сторону, а потом извлечь квадратный корень.
Ответ: х = √ {(а1 2 + 5 а2 2 ) / 6}.
Противопоказания к упражнениям с гантелями
Упражнения на трапециевидную мышцу противопоказаны к выполнению женщинам, которые имеют следующие заболевания организма:
- варикозное расширение вен, тромбофлебит и прочие патологии сосудистой ткани;
- нарушения ритмической активности сердца (аритмия, тахикардия, брадикардия, стенокардия);
- ранее перенесённый инсульт головного мозга или тяжёлая черепно-мозговая травма;
- артроз плечевого или локтевого суставов;
- грыжа грудного или шейного отдела позвоночника;
- сахарный диабет;
- артериальная гипертензия, течение которой сопровождается периодическими скачками давления и гипертоническими кризами;
- паховая грыжа;
- опущение матки, а также воспалительные заболевания женской репродуктивной системы;
- воспаление геморроидальных узлов.
Средние линии четырехугольника. Теорема Вариньона
Определение. Средней линией четырехугольника называют отрезок, соединяющий середины непересекающихся сторон четырёхугольника.
Поскольку у каждого имеются две пары непересекающихся сторон, то у каждого четырехугольника имеются две средних линии (рис.10).
Рис.10
На рисунке 10 средние линии – это отрезки EF и GH .
Замечание 1. Приведенное определение средней линии относится не только к плоским четырехугольникам, но и к «пространственным четырехугольникам» (рис.11). «Пространственным четырехугольником» мы называем без самопересечений, не лежащую в одной плоскости.
Рис.11
На рисунке 11 изображен «пространственный четырёхугольник» ABCD , средними линиями которого являются отрезки EF и GH .
Замечание 2. Несмотря на то, что трапеция является четырехугольником, принято средней линией трапеции называть только .
Замечание 3. В данном разделе справочника не рассматриваются невыпуклые четырёхугольники и четырёхугольники с самопересечениями.
Теорема Вариньона. Середины сторон произвольного плоского или «пространственного» являются вершинами .
Доказательство. Рассмотрим плоский четырёхугольник ABCD , изображенный на рисунке 12. Точки E, G, F, H – середины сторон, отрезок AC – диагональ четырёхугольника.
Рис.12
Поскольку отрезок EG – ABC , то . Поскольку отрезок FH – CDA , то . Таким образом, в четырёхугольнике EGFH противоположные стороны EG и FH равны и параллельны. В силу отсюда вытекает, что четырёхугольник EGFH – параллелограмм, что и требовалось доказать.
Замечание 4 . В случае «пространственного четырёхугольника» ABCD доказательство остаётся тем же (рис. 13).
Рис.13
Поскольку , то справедливо следующее утверждение, непосредственно вытекающее из теоремы Вариньона.
Утверждение 5. Средние линии произвольного пересекаются и в точке пересечения делятся пополам (рис. 14).
Рис.14
Утверждение 6. Рассмотрим произвольный плоский или «пространственный» ABCD , у которого отрезок EF является одной из средних линий (рис. 15). Тогда будет выполнено векторное равенство:
Рис.15
Доказательство. Рассмотрим в пространстве или (рис. 16).
Рис.16
В соответствии со свойствами векторов справедливы следующие равенства:
что и требовалось доказать.
Следствие. Средняя линия меньше или равна половине суммы не пересекающих её сторон четырёхугольника, причём равенство достигается лишь в том случае, когда указанные стороны четырёхугольника параллельны.
Другими словами, средняя линия четырёхугольника равна половине суммы не пересекающих её сторон четырёхугольника лишь в том случае, когда этот четырехугольник является , а не пересекающие среднюю линию стороны четырёхугольника – основания трапеции.
Площадь параллелограмма и трапеции
Правило. Площадь параллелограмма
равна произведению его стороны на высоту, проведенную к этой стороне.
- Отрезок, соединяющий середины диагоналей трапеции равен половине разности оснований
- Треугольники, образованные основаниями трапеции и отрезками диагоналей до точки их пересечения — подобны
- Треугольники, образованные отрезками диагоналей трапеции, стороны которых лежат на боковых сторонах трапеции — равновеликие (имеют одинаковую площадь)
- Если продлить боковые стороны трапеции в сторону меньшего основания, то они пересекутся в одной точке с прямой, соединяющей середины оснований
- Отрезок, соединяющий основания трапеции, и проходящий через точку пересечения диагоналей трапеции, делится этой точкой в пропорции, равной соотношению длин оснований трапеции
- Отрезок, параллельный основаниям трапеции, и проведенный через точку пересечения диагоналей, делится этой точкой пополам, а его длина равна 2ab/(a + b), где a и b — основания трапеции
Свойства отрезка, соединяющего середины диагоналей трапеции
Соединим середины диагоналей трапеции ABCD, в результате чего у нас появится отрезок LM.
Отрезок, соединяющий середины диагоналей трапеции, лежит на средней линии трапеции
.
Данный отрезок параллелен основаниям трапеции
.
Длина отрезка, соединяющего середины диагоналей трапеции, равна полуразности ее оснований.
LM = (AD — BC)/2
или
LM = (a-b)/2
Свойства треугольников, образованных диагоналями трапеции
Треугольники, которые образованы основаниями трапеции и точкой пересечения диагоналей трапеции — являются подобными
.
Треугольники BOC и AOD являются подобными. Поскольку углы BOC и AOD являются вертикальными — они равны.
Углы OCB и OAD являются внутренними накрест лежащими при параллельных прямых AD и BC (основания трапеции параллельны между собой) и секущей прямой AC, следовательно, они равны.
Углы OBC и ODA равны по той же самой причине (внутренние накрест лежащие).
Так как все три угла одного треугольника равны соответствующим углам другого треугольника, то данные треугольники подобны.
Что из этого следует?
Для решения задач по геометрии подобие треугольников используется следующим образом. Если нам известны значения длин двух соответствующих элементов подобных треугольников, то мы находим коэффициент подобия (делим одно на другое). Откуда длины всех остальных элементов соотносятся между собой точно таким же значением.
Свойства треугольников, лежащих на боковой стороне и диагоналях трапеции
Рассмотрим два треугольника, лежащих на боковых сторонах трапеции AB и CD. Это — треугольники AOB и COD. Несмотря на то, что размеры отдельных сторон у данных треугольников могут быть совершенно различны, но площади треугольников, образованных боковыми сторонами и точкой пересечения диагоналей трапеции равны
, то есть треугольники являются равновеликими.
Если продлить стороны трапеции в сторону меньшего основания, то точка пересечения сторон будет совпадать с прямой линией, которая проходит через середины оснований
.
Таким образом, любая трапеция может быть достроена до треугольника. При этом:
- Треугольники, образованные основаниями трапеции с общей вершиной в точке пересечения продленных боковых сторон являются подобными
- Прямая, соединяющая середины оснований трапеции, является, одновременно, медианой построенного треугольника
Свойства отрезка, соединяющего основания трапеции
Если провести отрезок, концы которого лежат на основаниях трапеции, который лежит на точке пересечения диагоналей трапеции (KN), то соотношенее составляющих его отрезков от стороны основания до точки пересечения диагоналей (KO/ON) будет равно соотношению оснований трапеции
(BC/AD).
KO / ON = BC / AD
Данное свойство следует из подобия соответствующих треугольников (см. выше).
Свойства отрезка, параллельного основаниям трапеции
Если провести отрезок, параллельный основаниям трапеции и проходящий через точку пересечения диагоналей трапеции, то он будет обладать следующими свойствами:
- Заданный отрезок (KM) делится точкой пересечения диагоналей трапеции пополам
-
Длина отрезка
, проходящего через точку пересечения диагоналей трапеции и параллельного основаниям, равна KM = 2ab/(a + b)
шаг
Метод 1 из 2: определение площади по длине параллелей и высоте
-
Добавьте длину параллельных сторон.
Например, предположим, вы знаете, что значение стороны параллельно вершине (b1) составляет 8 см, а нижняя параллель (b2) составляет 13 см, общая длина параллельных сторон 8 см + 13 см = 21 см (что отражает часть «b = b1 + b2″в формуле).
Как следует из названия, параллельные стороны — это 2 параллельные стороны трапеции. Если вы еще не знаете длины двух параллельных сторон, измерьте их линейкой. После этого сложите два вместе.
-
Измерьте высоту трапеции.
Длина гипотенузы или основания трапеции не равна высоте трапеции. Линия высоты должна быть перпендикулярна двум параллельным сторонам.
Высота трапеции — это расстояние между двумя параллельными сторонами. Проведите линию между двумя параллельными сторонами и с помощью линейки или другого измерительного инструмента найдите длину линии. Делайте заметки, чтобы не забыть и не потерять их.
-
Умножьте количество параллельных сторон на высоту.
В этом примере 21 см x 7 см = 147 см, что отражает часть уравнения «(b) t».
Далее вам нужно умножить сумму сторон (b) на высоту (t) трапеции. Ответы должны быть в квадратных единицах.
-
Умножьте результат на ½, чтобы найти площадь трапеции.
В этом примере площадь (W) трапеции составляет 147 см / 2 = 73,5 см.
Вы можете умножить произведение на 1/2 или разделить на 2, чтобы найти конечную площадь трапеции. Убедитесь, что единицы ответа выражены в квадратных единицах.
Метод 2 из 2: расчет площади трапеции, если вы знаете размер сторон
-
Разбейте трапецию на 1 прямоугольник и 2 прямоугольных треугольника.
Этот метод работает только со стандартной равнобедренной трапецией.
Нарисуйте прямую линию из каждого угла верхней стороны трапеции перпендикулярно нижней стороне. Теперь у трапеции есть 1 прямоугольник посередине и 2 правых и левых правых треугольника. Рекомендуется провести эту линию, чтобы вы могли более четко видеть форму и рассчитать высоту трапеции.
-
Найдите длину одного из оснований треугольника.
Например, если верхний (b1) по длине 6 см и нижней стороной по (b2) 12 см, что означает, что основание треугольника равно 3 см (поскольку b = (b2 — б1) / 2 и (12 см — 6 см) / 2 = 6 см, что может быть упрощено до 6 см / 2 = 3 см).
Отнимите длину нижней стороны трапеции от верхней. Разделите результат на 2, чтобы найти длину основания треугольника. Теперь у вас есть длина основания и гипотенуза треугольника.
-
Используйте теорию Пифагора, чтобы найти высоту трапеции. Подставьте длины основания и гипотенузы (самой длинной стороны треугольника) в формулу Пифагора A + B = C, где A — основание, а C — гипотенуза. Решите уравнение для B, чтобы найти высоту трапеции. Если длина стороны основания 3 см, а длина гипотенузы 5 см, вот расчет:
- Подставьте переменные: (3 см) + B = (5 см)
- Возведите числа в квадрат: 9 см + B = 25 см.
- Отнимите 9 см с каждой стороны: B = 16 см.
- Найдите квадратный корень из каждой стороны: B = 4 см.
Подсказки: Если у вас нет идеального квадрата в уравнении, просто упростите его насколько возможно и оставьте остаток как квадратный корень, например √32 = √ (16) (2) = 4√2.
-
Подставьте длину и высоту трапеции в формулу площади и решите. Подставьте длину и высоту основания в формулу L = ½ (b1 + b2) t, чтобы найти площадь трапеции. Максимально упростите числа и дайте им квадратные единицы.
- Установите формулу: L = ½ (b1+ b2) т
- Подставьте переменные: L = ½ (6 см + 12 см) (4 см)
- Упростите термины: A = ½ (18 см) (4 см)
- Умножьте числа: W = 36 см.
Вписанные и описанные трапеции
Давайте перечислим особенности таких фигур:
1. Трапеция может быть вписана в окружность тольков том случае, если она равнобедренная.
2. Около окружности можно описать трапецию, при условии, что сумма длин их оснований равна сумме длин боковых сторон.
Следствия вписанной окружности:
1. Высота описанной трапеции всегда равна двум радиусам.
2. Боковая сторона описанной трапеции наблюдается из центра окружности под прямым углом.
Первое следствие очевидно, а для доказательства второго требуется установить, что угол СОД является прямым, что, по сути, также не составит большого труда. Зато знание данного свойства позволит при решении задач применять прямоугольный треугольник.
Теперь конкретизируем эти следствия для равнобедренной трапеции, которая вписана в окружность. Получаем, что высота является средним геометрическим оснований фигуры: Н=2R=√(БС*АД). Отрабатывая основной прием решения задач для трапеций (принцип проведения двух высот), учащийся должен решить следующее задание. Принимаем, что БТ — высота равнобедренной фигуры АБСД. Необходимо найти отрезки АТ и ТД. Применяя формулу, описанную выше, это будет сделать не сложно.
Теперь давайте разберемся, как определить радиус окружности, используя площадь описанной трапеции. Опускаем из вершины Б высоту на основание АД. Так как окружность вписана в трапецию, то БС+АД = 2АБ или АБ = (БС+АД)/2. Из треугольника АБН находим sinα = БН/АБ = 2*БН/(БС+АД). ПАБСД = (БС+АД)*БН/2, БН=2R. Получаем ПАБСД = (БС+АД)*R, отсюда следует, что R = ПАБСД/(БС+АД).
Площадь равнобедренной трапеции
Равнобедренная трапеция — это частный случай трапеции. Ее отличие в том, что такая трапеция — это выпуклый четырехугольник с осью симметрии, проходящей через середины двух противоположных сторон. Ее боковые стороны равны.
Равнобедренная трапеция
Найти площадь равнобедренной трапеции можно несколькими способами.
Через длины трех сторон. В этом случае длины боковых сторон будут совпадать, поэтому обозначены одной величиной — с, а и b — длины оснований:
Если известна длина верхнего основания, боковой стороны и величина угла при нижнем основании, то площадь вычисляется так:
S = c * sin α * (a + c * cos α)
где а — верхнее основание, с — боковая сторона.
Если вместо верхнего основания известна длина нижнего – b, площадь рассчитывается по формуле:
S = c * sin α * (b – c * cos α)
Если когда известны два основания и угол при нижнем основании, площадь вычисляется через тангенс угла:
S = ½ * (b2 – a2) * tg α
Также площадь рассчитывается через диагонали и угол между ними. В этом случае диагонали по длине равны, поэтому каждую обозначаем буквой d без индексов:
S = ½ * d2 * sin α
Вычислим площадь трапеции, зная длину боковой стороны, средней линии и величину угла при нижнем основании.
Пусть боковая сторона — с, средняя линия — m, угол — a, тогда:
S = m * c * sin α
Иногда в равностороннюю трапецию можно вписать окружность, радиус которой будет — r.
Круг в трапеции
Известно, что в любую трапецию можно вписать окружность, если сумма длин оснований равна сумме длин ее боковых сторон. Тогда площадь найдется через радиус вписанной окружности и угол при нижнем основании:
S = 4r2 / sin α
Такой же расчет производится и через диаметр D вписанной окружности (кстати, он совпадает с высотой трапеции):
S = D2 / sin α
Зная основания и угол, площадь равнобедренной трапеции вычисляется так:
S = a * b / sin α
(эта и последующие формулы верны только для трапеций с вписанной окружностью).
Трапеция в круге
Через основания и радиус окружности площадь ищется так:
S = r * (a + b)
Если известны только основания, то площадь считается по формуле:
Через основания и боковую линию площадь трапеции с вписанным кругом и через основания и среднюю линию — m вычисляется так:
Площадь прямоугольной трапеции
Прямоугольной называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям. В этом случае боковая сторона по длине совпадает с высотой трапеции.
Прямоугольная трапеция представляет из себя квадрат и треугольник. Найдя площадь каждой из фигур, сложите полученные результаты и получите общую площадь фигуры.
Прямоугольная трапеция
Также для вычисления площади прямоугольной трапеции подходят общие формулы для расчета площади трапеции.
Если известны длины оснований и высота (или перпендикулярная боковая сторона), то площадь рассчитывается по формуле:
S = (a + b) * h / 2
В качестве h (высоты) может выступать боковая сторона с. Тогда формула выглядит так:
S = (a + b) * c / 2
Другой способ рассчитать площадь — перемножить длину средней линии на высоту:
S = m * h
или на длину боковой перпендикулярной стороны:
S = m * c
Следующий способ вычисления — через половину произведения диагоналей и синус угла между ними:
S = ½ * d1 * d2 * sin α
Прямоугольная трапеция с перпендикулярными диагоналями
Если диагонали перпендикулярны, то формула упрощается до:
S = ½ * d1 * d2
Еще один способ вычисления — через полупериметр (сумма длин двух противоположных сторон) и радиус вписанной окружности.
S = (a + b) * r
Эта формула действительна для оснований. Если брать длины боковых сторон, то одна из них будет равна удвоенному радиусу. Формула будет выглядеть так:
S = (2r + c) * r
Если в трапецию вписана окружность, то площадь вычисляется так же:
S = 2m * r
где m — длина средней линии.
Прямоугольная и равнобедренная трапеция
Существует два частных вида трапеции, обладающих особыми свойствами. Первый из них – это прямоугольная трапеция. Она отличается тем, что один из ее углов равен 90°.
Здесь∠А = 90°. Легко догадаться, что на самом деле если у трапеции хоть один угол составляет 90°, то найдется и ещё один угол, также равный 90°. В данном случае это ∠В. Сумма ∠A и ∠D должна составлять 180°, ведь они односторонние. Именно поэтому из условия
Задание. Основания прямоугольной трапеции имеют длину 10 и 15 см, а один из углов составляет 45°. Вычислите длину ее наименьшей боковой стороны?
Решение:
Пусть основания заданной трапеции – это отрезки АD и ВС, ∠А = 45°, ∠D = ∠C = 90°. Опустим из точки В перпендикуляр ВН на АD:
Очевидно, что ВН||CD, ведь эти отрезки перпендикулярны одной прямой АD. Получается, что в четырехуг-ке НВСD противоположные стороны попарно параллельны, то есть он является параллелограммом. Отсюда вытекает равенство его сторон:
Нашли СD, но является ли этот отрезок именно меньшей боковой стороной трапеции? Для ответа на этот вопрос вернемся к ∆АВН. В нем АВ – это гипотенуза, а потому она заведомо больше катета ВН, то есть больше 5 см. Значит, именно CD – это меньшая боковая сторона.
Ответ: 5 см.
Ещё один особый вид трапеции – равнобедренная трапеция. Она отличается тем, что у неё длины боковых сторон одинаковы.
Равнобедренная трапеция обладает рядом интересных свойств. Начнем с того, что углы при каждом из ее оснований равны.
В итоге мы получили четырехуг-к АВСН, в котором АВ||CН, ВС||АН. Это значит, что он является параллелограммом, и тогда
Отсюда сразу же вытекает и второе свойство равнобедренной трапеции – у неё равные диагонали.
Доказывается этот факт с помощью :
Действительно, треуг-ки ∆АВD и ∆АСD равны, ведь
Оказывается, есть признаки, которые позволяют определить, является ли трапеция равнобедренной. Сформулируем первый из них:
Для доказательства снова построим в трапеции АВСD такую прямую СН, что СН||АВ:
Тогда
Несколько сложнее доказать другую теорему:
Пусть в трапеции АВCD одинаковы диагонали ВD и АС. Для определенности будем считать, что большее основание – это АD. Опустим из точек В и С перпендикуляры ВЕ и СF на АD:
Ясно, что эти перпендикуляры параллельны друг другу, ведь они перпендикулярны третьей прямой. Тогда в ВСFЕ противоположные стороны параллельны, то есть эта фигура – параллелограмм. Отсюда вытекает, что
BE = CF
Далее рассмотрим ∆ВЕD и ∆АСF. Они оба являются прямоугольными, у них одинаковы гипотенузы (АС = ВD), а также и катеты ВЕ и СF. Значит, эти треуг-ки равны, следовательно,
Задание. Один из углов равнобедренной трапеции составляет 55°. Найдите все остальные углы этой трапеции.
Решение. Проще всего найти ∠D, ведь углы при основании равнобедренной трапеции одинаковы:
Заметим одно важное обстоятельство. Если достроить равнобедренную трапецию до треугольника, продолжив ее боковые стороны, то получится равнобедренный треуг-к:
Действительно, если АВСD – равнобедренная трапеция, то
∠А = ∠D
Пусть продолжения боковых сторон пересеклись в некоторой точке Е. Тогда в ∆АЕD два угла, ∠А и ∠D, окажутся равными, следовательно, ∆АЕD– равнобедренный.
Построение с помощью трикотажной майки
Майка должна быть чистой и выглаженной. Для точного получения выкройки необходимо разложить изделие на бумагу и зафиксировать его тяжелым предметом, например, книгой, или приколоть булавками.
Этапы построения:
- Обвести майку точно по контуру со стороны спинки и переда. Швы должны совпадать друг с другом, на ткани не должно быть заломов.
- Обозначить вертикальную линию середины, чтобы проверить симметричность полученного лекала. По разметке согнуть перед и спинку и скорректировать полученные боковые, плечевые срезы, контуры проймы, горловины и низа.
- Провести моделирование выкройки. От начальной плечевой точки по спинке отметить длину готового изделия и удлинить выкройку. От линии проймы провести новую боковую линию, которая максимально расширена по низу изделия. Линию низа оформить плавно.
- Вырезать выкройку и перенести ее на ткань с учетом припусков на швы: боковые 1, 5 — 2 см, срезы горловины и проймы 1, 0 — 1, 5 см, срезы низа 3 — 5 см.