Таблица критических температур сверхпроводников химических элементов (3 часть):
61 | Прометий | Pm | |
62 | Самарий | Sm | |
63 | Европий | Eu | ≈1,8 K (при давлении ≈80 ГПа) |
64 | Гадолиний | Gd | |
65 | Тербий | Tb | |
66 | Диспрозий | Dy | |
67 | Гольмий | Ho | |
68 | Эрбий | Er | |
69 | Тулий | Tm | |
70 | Иттербий | Yb | |
71 | Лютеций | Lu | 0,1 K,
1,2 K (при давлении 18 ГПа) |
72 | Гафний | Hf | 0,37 K |
73 | Тантал | Ta | 4,45 K |
74 | Вольфрам | W | 0,012 K – α-вольфрам,
1-4 K – β-вольфрам |
75 | Рений | Re | 1,697±0,006 K |
76 | Осмий | Os | 0,66 K |
77 | Иридий | Ir | 0,11 K |
78 | Платина | Pt | |
79 | Золото | Au | |
80 | Ртуть | Hg | 4,153 K – α-ртуть,
3,95 K – β-ртуть, 3,74 K – γ-ртуть |
81 | Таллий | Tl | 2,38 K |
82 | Свинец | Pb | 7,19 K |
83 | Висмут | Bi | ≈0,5 мK |
84 | Полоний | Po | |
85 | Астат | At | |
86 | Радон | Rn | |
87 | Франций | Fr | |
88 | Радий | Ra | |
89 | Актиний | Ac | |
90 | Торий | Th | 1,4 K |
91 | Протактиний | Pa | 1,4 K |
92 | Уран | U | 0,68±0,02 K |
93 | Нептуний | Np | |
94 | Плутоний | Pu | |
95 | Америций | Am | 0,6 K |
96 | Кюрий | Cm | |
97 | Берклий | Bk | |
98 | Калифорний | Cf | |
99 | Эйнштейний | Es | |
100 | Фермий | Fm | |
101 | Менделевий | Md | |
102 | Нобелий | No | |
103 | Лоуренсий | Lr | |
104 | Резерфордий (Курчатовий) | Rf | |
105 | Дубний (Нильсборий) | Db | |
106 | Сиборгий | Sg | |
107 | Борий | Bh | |
108 | Хассий | Hs | |
109 | Мейтнерий | Mt | |
110 | Дармштадтий | Ds |
Коэффициент востребованности
221
Предыстория
С введением в физику такого понятия как «абсолютный ноль» ученые стали все больше исследовать свойства веществ при низкой температуре, когда движение молекул практически отсутствует. Для достижения низких температур требуется проведение такого процесса, как «сжижение газа». При испарении такой газ отбирает энергию у тела, которое погружено в этот газ, так как для отрыва молекул от жидкости требуется энергия. Подобные процессы протекают в бытовых холодильниках, где сжиженный газ фреон испарятся в морозилке.
В конце XIX – начале XX столетия уже были получены такие сжиженные газы как кислород, азот, водород. Долгое время не поддавался сжижению гелий, при этом ожидалось, что он поможет достичь минимальной температуры.
Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом (слева)
Успех в сжижении гелия был достигнут голландским физиком Хейке Камерлинг-Оннесем в 1908-м году, который работал в Лейденском университете (Нидерланды). Сжиженный гелий позволял достичь рекордно низкой температуры – около 4 К. Получив жидкий гелий, ученый начал заниматься изучением свойств разных материалов при гелиевых температурах.
Текущее исследование
Вопрос о том, как возникает сверхпроводимость в высокотемпературных сверхпроводниках, является одной из основных нерешенных проблем теоретической физики конденсированного состояния . Механизм, который заставляет электроны в этих кристаллах образовывать пары, неизвестен. Несмотря на интенсивные исследования и множество многообещающих выводов, объяснение до сих пор ускользает от ученых. Одна из причин этого заключается в том, что рассматриваемые материалы, как правило, представляют собой очень сложные многослойные кристаллы (например, BSCCO ), что затрудняет теоретическое моделирование.
Улучшение качества и разнообразия образцов также дает повод для значительных исследований, как с целью улучшения характеристик физических свойств существующих соединений, так и для синтеза новых материалов, часто с надеждой на увеличение T c . Технологические исследования сосредоточены на производстве ВТСП-материалов в количествах, достаточных для того, чтобы их использование было экономически целесообразным, и оптимизации их свойств в зависимости от применения .
Металлический водород и сверхпроводимость
Но при чем тут сверхпроводимость? Вроде бы исследователи ничего об этом не упоминают? Действительно, сверхпроводимость не была предметом изучения интернациональной команды Эдинбургского университета. Однако, как говорят сами учёные, «мы полагаем, что фаза V может быть предшественником немолекулярного (атомизированного и металлического) состояния водорода, предсказанного 80 лет назад». Вот в этом предсказании и скрыта интрига. В 1935 году Юджином Вигнером и Хиллардом Беллом Хантингтоном (E. Wigner, H. B. Huntington) была опубликована работа, в которой утверждалось, что при превышении определённого давления ядро атома лишится валентного электрона и в объёме водорода образуется свободный электронный газ, свойственный металлам. Последующие расчёты выявили, что в этом состоянии водород должен будет обладать рядом очень значительных свойств, в том числе сверхпроводимостью при температурах, сопоставимых с комнатной (Ashcroft, N.W. Metallic Hydrogen: A High-Temperature Superconductor? \ Physical Review Letters. — 1968. — Vol. 21, №. 26. — p. 1748).
До сих пор эти расчёты оставались чистым теоретизированием, поскольку получить металлический водород не удавалось даже в лабораторных условиях, не говоря уж о промышленных объёмах. Что ж, похоже, сегодня шанхайскому Center for High Pressure Science & Technology Advanced Research удалось ранее недостижимое, и человечество вплотную приблизилось к тому, чтобы воочию увидеть металлическое лицо первого элемента Периодической системы Менделеева. Остаётся пустяк — зафиксировать это состояние при атмосферном давлении… Очень хочется надеяться, что это случится раньше, чем мир скатится к варварству ортодоксального шариата или станет объектом «исследования» интеллектуальных боеголовок ядерных ракет.
Теоретическое объяснение эффекта сверхпроводимости
Феноменологический подход. Хоть Камерлинг-Оннес и является первооткрывателем сверхпроводимости, первая теория сверхпроводимости впервые была предложена в 1935-м году немецкими физиками и братьями Фрицом и Гайнцом Лондонами. Ученые стремились математически записать такие свойства сверхпроводника как сверхпроводимость и эффект Мейснера, не вникая в микроскопические причины сверхпроводимости, феноменологически. Выведенные уравнения позволяли объяснить эффект Мейснера так, что внешнее магнитное поле могло проникать в сверхпроводник только на определенную глубину, зависящую от так называемой лондоновской глубины проникновения. Для объяснения сверхпроводимости, потребовалось предположение о том, что носителями тока в сверхпроводнике, как и в металле, являются электроны. При этом, нулевое сопротивление означает то, что электрон не испытывает столкновений во время своего движения. Так как это относится ко всем электронам проводимости, то имеет место ток электронов без сопротивления.
Очевидно, что данная теория не объясняет саму природу данного явления, а лишь описывает его и позволяет предсказывать его поведение в ряде случаев. Более глубокая, но также, феноменологическая теория была предложена в 1950-м году советскими физиками-теоретиками Левом Ландау и Виталием Гнизбургом.
Куперовская пара электронов, движущаяся сквозь решетку из положительных атомов. Первый электрон искажает решетку, создавая область повышенного положительного заряда, в которую втягивается второй электрон.
Теория БКШ. Первое качественное объяснение явлению сверхпроводимости было предложено в рамках так называемой теории БКШ, построенной американскими физиками Джоном Бардином, Леоном Купером и Джоном Шриффером. Эта теория выходит из предположения, что между электронами при определенных условиях может возникать притяжение. Притяжение, которое обусловлено различными возбуждениями, в первую очередь – колебаниями кристаллической решетки, способно создавать «куперовские пары» — связанные состояния двух электронов в кристалле. Такая пара может двигаться в кристалле, не рассеиваясь ни на колебания кристаллической решетки, ни на примеси. В веществах с температурой, далекой от нуля, достаточно энергии, чтобы «разорвать» такую пару электронов, в то время как при низких температурах система не обладает достаточной энергией. В результате этого возникает поток связанных электронов – куперовских пар, которые практически не взаимодействуют с веществом. В 1972-м году Д. Бардин, Л. Купер и Д. Шриффер получили Нобелевскую премию по физике.
Позднее советский физик-теоретик Николай Боголюбов усовершенствовал теорию БКШ. В своих работах ученый подробно описал условия, при которых могут образовываться куперовские пары (энергия близкая к энергии Ферми, определенные спины и др.) в результате квантовых эффектов. По отдельности электроны представляют собой частицы с полуцелым спином (фермионы), которые неспособны образовывать конденсат Бозе-Эйнштейна и переходить в сверхтекучее состояние. Когда же имеется куперовская пара электронов, то она представляет собой квазичастицу с целым спином и является бозоном. При определенных условиях бозоны способны формировать конденсат Бозе-Эйнштейна, то есть вещество, частицы которого занимают одно и то же состояние, что приводит к возникновению сверхтекучести. Такая сверхтекучесть электронов и объясняет эффект сврехпроводимости.
Характеристики
К сожалению, класс «высокотемпературных» сверхпроводников имеет множество определений в контексте сверхпроводимости.
Маркировка high- T c должна быть зарезервирована для материалов с критическими температурами выше точки кипения жидкого азота . Тем не менее, количество материалов — в том числе оригинальных открытий и недавно обнаруженная pnictide сверхпроводников — имеет критические температуры ниже 77 К , но , тем не менее, обычно называет в публикациях , как высокий Т гр класс.
Вещество с критической температурой выше точки кипения жидкого азота вместе с высоким критическим магнитным полем и критической плотностью тока (выше которой разрушается сверхпроводимость) принесло бы большую пользу технологическим приложениям. В магнитных приложениях высокое критическое магнитное поле может оказаться более ценным, чем само высокое значение T c . Некоторые купраты имеют верхнее критическое поле около 100 тесла. Однако купратные материалы представляют собой хрупкую керамику, которую дорого производить, и которую нелегко превратить в проволоку или другую полезную форму. Кроме того, высокотемпературные сверхпроводники не образуют больших сплошных сверхпроводящих доменов, а скорее кластеры микродоменов, внутри которых возникает сверхпроводимость. Поэтому они не подходят для применений, требующих наличия реальных сверхпроводящих токов, таких как магниты для спектрометров магнитного резонанса . Для решения этой проблемы (порошки) см. HTS_wire .
Было много споров относительно сосуществования высокотемпературной сверхпроводимости с магнитным упорядочением в YBCO, сверхпроводниках на основе железа , некоторых рутенкупратах и других экзотических сверхпроводниках, и продолжаются поиски других семейств материалов. ВТСП — это сверхпроводники второго типа , которые позволяют магнитным полям проникать в их внутреннюю часть в квантованных единицах потока, а это означает, что для подавления сверхпроводимости требуются гораздо более высокие магнитные поля. Слоистая структура также дает направленную зависимость отклика магнитного поля.
Сверхпроводники
Без подробного теоретического понимания возникновения этого явления — хотя существенный прогресс делается постоянно — ученые иногда чувствуют, что занимаются гаданием на кофейной гуще, пытаясь подобрать подходящие материалы. Это похоже на попытку угадать номер телефона, который составлен из таблицы периодических элементов вместо цифр. Но перспектива остается и очень волнует. Нобелевская премия и дивный, новый мир энергии и электричества — неплохая награда за успешный результат.
Это может быть будущим.
В некоторых исследованиях основное внимание уделяется купратам, сложным кристаллам, содержащим слои меди и атомов кислорода. Соединение купратов с различными элементами, экзотическими соединениями вроде ртуть-барий-кальций-медь оксида, создают лучшие сверхпроводники, известные сегодня
Ученые также продолжают сообщать аномальные и неожиданные новости о том, что пропитанный водой графит может выступать в качестве сверхпроводника, работающего при комнатной температуре, но нет никаких указателей на то, что эти новости можно положить в основу технологий.
В начале 2017 года, исследуя самые экстремальные и экзотические формы материи, которые мы можем создать на Земле, ученые умудрились сжать водород до состояния металла. Для этого им понадобилось давление, превышающее давление в ядре Земли и в тысячи раз большее, чем на дне океана. Некоторые ученые в этой области — физике конденсированной материи — вообще сомневаются, что металлический водород удалось произвести.
Однако полагается, что металлический водород может быть сверхпроводником, работающим при комнатной температуре. Но работа с образцами оказывается очень сложной, потому что даже алмазы, содержащие металлический водород, не выдерживают катастрофического давления.
Сверхпроводимость — или поведение, сильно ее напоминающее, — также наблюдалась у иттрий-барий-медь оксида при комнатной температуре в 2014 году. Проблема лишь в том, что транспорт электрона проходил лишь крошечную долю секунды и требовал бомбардировки материала лазерными импульсами.
Применение сверхпроводников
Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке – маглевы.
На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.
Поезд на магнитном подвеске в Шанхае, Китай
Криотрон – еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой – повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.
Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.
Самая близкая к идеальной сфера из всех когда-либо созданных человеком — ротор гироскопа GP-B. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.
Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.
Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.
Таблица критических температур сверхпроводников химических элементов.
Поделитесь информацией:
Сверхпроводимость — свойство некоторых материалов обладать абсолютно нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (т.н. критической температуры сверхпроводника).
Сверхпроводимостью обладают металлы и их сплавы, полупроводники, неметаллы, а также керамические материалы и иные вещества.
Сверхпроводящее состояние в материале возникает не постепенно, а скачкообразно – при достижении температуры ниже критической. Выше этой температуры металл, неметалл, сплав или иной материал находится в нормальном состоянии, а ниже ее – в сверхпроводящем. Для некоторых веществ переход в сверхпроводящее состояние становится возможным при определенных внешних условиях, например, по достижении определенного значения давления.
Критическая температура сверхпроводника измеряется в градусах Цельсия, кельвинах или градусах Фаренгейта.
Критическая температура сверхпроводника обозначается символом Tc.
Сверхпроводимость графена
За последние несколько лет известность графена значительно возросла. Напомним, что графен представляет собой слой модифицированного углерода, толщиной в один атом. В первую очередь, этому поспособствовало открытие углеродных нанотрубок – специфическому сверхпрочному материалу, который создается посредством сворачивания одного или нескольких слоев графена.
Крупномасштабная симуляция структуры, сформированной, когда одна решетка графена повернута под «магическим углом» относительно второй решетки графена
В 2018-м году группа исследователей из Массачусетского технологического института и Гарвардского университета под руководством профессора Пабло Джарилло-Эрреро, обнаружила, что при вращении под определенном («магически») углом, два листа графена полностью лишены электропроводимости. Когда исследователи применили к материалу напряжение, добавив небольшое количество электродов к этой графеновой конструкции, они обнаружили, что на определенном уровне электроны вырвались из исходного изолирующего состояния и протекали без сопротивления. Важнейшей особенностью данного явления является то, что сверхпроводимость указанной графеновой конструкции была получена при комнатной температуре. И хотя объяснение данного эффекта все еще остается под вопросом, его потенциал в сфере энергоснабжения довольно высок.
Сверхпроводники в переменном электрическом поле
Кроме сверхпроводимости и эффекта Мейснера, сверхпроводники обладают рядом других свойств. Стоит отметить следующее — нулевое сопротивление сверхпроводников характерно только при постоянном токе. Переменное электрическое поле делает сопротивление сверхпроводника ненулевым и оно растет, с увеличением частоты поля.
Также как двухжидкостная модель разделяет сверхтекучий материал на область сверхтекучести и область обычного вещества, так разделяется и поток электронов на сверхпроводящие и обычные. Постоянно поле ускоряло бы сверхпроводящие электроны до бесконечности (учитывая их нулевое сопротивление), что невозможно, потому оно обращается в ноль при попадании в сверхпроводник. Так как постоянное электрическое поле не действует на сверхпроводники, то и обычные электроны не подвержены его воздействию (оно просто выталкивается наружу), а значит движение представлено лишь сверхпроводящими электронами.
В случае с переменным электрическим полем происходит процесс ускорения электронов с последующим замедлением, что физически возможно. В таком случае имеет место и ток обычных электронов, которые обладают свойством сопротивления. Чем выше частота такого поля, тем большее проявляются эффекты, связанные с обычными электронами.
История открытия
Одним из вопросов, которые интересовали Камерлинг-Оннеса, было изучение сопротивления металлов при сверхнизких температурах. Было известно, что с ростом температуры электрическое сопротивление также растет. Следовательно, можно ожидать, что с уменьшением температуры будет наблюдаться обратный эффект.
Экспериментируя с ртутью в 1911-м году, ученый довел ее до замерзания и продолжил понижать температуру. При достижении 4,2 К устройство перестало фиксировать сопротивление. Оннес заменял устройства в исследовательской установке, поскольку побаивался их неисправности, однако устройства неизменно показывали нулевое сопротивление, несмотря на то, что до абсолютного нуля оставалось еще 4 К.
После открытия сверхпроводимости ртути возникло большое количество вопросов. Среди них: «свойственна ли сверхпроводимость другим веществам, помимо ртути?» или «сопротивление снижается до нуля, либо оно настолько мало, что устройства, которые существуют, не могут его измерить.
Оннес предложил оригинальное исследование с непрямым измерением, до какого уровня понижается сопротивление. Возбужденный в полупроводниковой цепи электрический ток, который был измерен при помощи отклонения магнитной стрелки, не затухал несколько лет. Согласно результатам этого эксперимента, полученное посредством расчетов удельное электрическое сопротивление сверхпроводника равнялось 10−25 Ом•м. По сравнению с удельным электрическим сопротивлением меди (1.5۰10−8 Ом•м) данная величина меньше на 7 порядков, что делает ее практически нулевой.
Классификация сверхпроводников
Существует несколько классификаций сверхпроводников, которые опираются на такие критерии:
- Реакция на магнитное поле. Это свойство делит сверхпроводники на две категории. Сверхпроводники I-го рода имеют некоторое одно критическое значение магнитного поля, превысив которое, они теряют сверхпроводимость. II-го рода – имеют два предельных значения магнитного поля. При применении магнитного поля, ограниченного этими значениями, к сверхпроводникам этой категории, поле частично проникает внутрь, при этом сохраняя сверхпроводимость.
- Критическая температура. Различают низкотемпературные и высокотемпературные сверхпроводники. Первые обладают свойством сверхпроводимости при температурах ниже −196 °C или 77 К. Высокотемпературным сверхпроводникам достаточно температуры выше указанной. Такое разделение имеет место, так как высокотемпературные сверхпроводники могут применяться на практике в качестве охладителей.
- Материал. Здесь выделяют такие разновидности как: чистый химический элемент (вроде ртути или свинца), сплавы, керамика, органические или на основе железа.
- Теоретическое описание. Как известно, любая физическая теория имеет определенную область применения. По этой причине, для дальнейшего применения, имеет смысл разделять сверхпроводники по теориям, которые способны описать их природу.
Эффект Мейснера
Помимо сверхпроводимости, сверхпроводники обладают еще одной отличительной чертой, а именно – эффектом Мейснера. Это явление быстрого затухания магнитного поля в сверхпроводнике. Сверхпроводник является диамагнетиком, то есть в магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, которое полностью компенсирует внешнее.
Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом
Эффект Мейснера пропадает в сильных магнитных полях. В зависимости от типа сверхпроводника (об этом далее) сверхпроводящее состояние при этом либо пропадает полностью (сверхпроводники I-го рода), либо сверхпроводник сегментируется на нормальные и сверхпроводимые области (II-го рода). Именно этот эффект способен объяснить левитацию сверхпроводника над сильным магнитом, либо магнита над сверхпроводником.
Водород Фаза V
Но 7 января 2015 года человечество получило новую благую весть. В статье «Доказательства существования нового состояния плотного водорода при давлении выше 325 гигапаскалей» исследователей Филиппа Далладей-Симпсона, Росса Т. Хоуи и Евгения Григорянца, опубликованной в журнале Nature, заявлено об открытии новейшего агрегатного состояния водорода, которое учёные назвали «фаза V». Принципиальное отличие нового состояния от полученной ранее «фазы IV» заключается в том, что фазу IV по её свойствам следует относить к полупроводникам, тогда как фаза V демонстрирует свойства металла. И эти свойства под давлением 350 ГПа (3,4 миллиона атмосфер) были зафиксированы при температуре 465 К, или -8 °C. Доказательством физики считают существенное ослабление подобного эффекта Рамана, проявляющегося в специфической способности поляризации света, которая возникает в результате взаимодействий фотонов с атомами исследуемого вещества. Исследователи лелеют надежду, что это может означать переход водорода в целиком (или почти полностью) металлическое состояние. При этом они делают акцент на том, что фаза V может и не быть абсолютным металлом в классическом понимании этого термина, но очень похожа на него по своим свойствам. Структура полученной ранее фазы IV представляла собой нечто вроде слоёв из шестигранников и гораздо дальше отстояла от классической кристаллической решётки металла, вплотную к которой приблизилась судя по её свойствам, структура фазы V.