История открытия
Одним из вопросов, которые интересовали Камерлинг-Оннеса, было изучение сопротивления металлов при сверхнизких температурах. Было известно, что с ростом температуры электрическое сопротивление также растет. Следовательно, можно ожидать, что с уменьшением температуры будет наблюдаться обратный эффект.
Экспериментируя с ртутью в 1911-м году, ученый довел ее до замерзания и продолжил понижать температуру. При достижении 4,2 К устройство перестало фиксировать сопротивление. Оннес заменял устройства в исследовательской установке, поскольку побаивался их неисправности, однако устройства неизменно показывали нулевое сопротивление, несмотря на то, что до абсолютного нуля оставалось еще 4 К.
После открытия сверхпроводимости ртути возникло большое количество вопросов. Среди них: «свойственна ли сверхпроводимость другим веществам, помимо ртути?» или «сопротивление снижается до нуля, либо оно настолько мало, что устройства, которые существуют, не могут его измерить.
Оннес предложил оригинальное исследование с непрямым измерением, до какого уровня понижается сопротивление. Возбужденный в полупроводниковой цепи электрический ток, который был измерен при помощи отклонения магнитной стрелки, не затухал несколько лет. Согласно результатам этого эксперимента, полученное посредством расчетов удельное электрическое сопротивление сверхпроводника равнялось 10−25 Ом•м. По сравнению с удельным электрическим сопротивлением меди (1.5۰10−8 Ом•м) данная величина меньше на 7 порядков, что делает ее практически нулевой.
Предыстория
С введением в физику такого понятия как «абсолютный ноль» ученые стали все больше исследовать свойства веществ при низкой температуре, когда движение молекул практически отсутствует. Для достижения низких температур требуется проведение такого процесса, как «сжижение газа». При испарении такой газ отбирает энергию у тела, которое погружено в этот газ, так как для отрыва молекул от жидкости требуется энергия. Подобные процессы протекают в бытовых холодильниках, где сжиженный газ фреон испарятся в морозилке.
В конце XIX – начале XX столетия уже были получены такие сжиженные газы как кислород, азот, водород. Долгое время не поддавался сжижению гелий, при этом ожидалось, что он поможет достичь минимальной температуры.
Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом (слева)
Успех в сжижении гелия был достигнут голландским физиком Хейке Камерлинг-Оннесем в 1908-м году, который работал в Лейденском университете (Нидерланды). Сжиженный гелий позволял достичь рекордно низкой температуры – около 4 К. Получив жидкий гелий, ученый начал заниматься изучением свойств разных материалов при гелиевых температурах.
Электрический ток в газах это. Электрический ток в газах и плазма
Полностью или частично ионизированный газ называется плазмой и считается четвертым агрегатным состоянием вещества. В целом плазма электрически нейтральна, так как суммарный заряд составляющих ее частиц равен нулю. Это отличает ее от других систем заряженных частиц, таких как, например, электронные пучки.
В природных условиях плазма образуется, как правило, при высоких температурах вследствие столкновения атомов газа на больших скоростях. Подавляющая часть барионной материи во Вселенной пребывает в состоянии плазмы. Это звезды, часть межзвездного вещества, межгалактический газ. Земная ионосфера также представляет собой разреженную слабо ионизированную плазму.
Степень ионизации является важной характеристикой плазмы – от нее зависят проводящие свойства. Степень ионизации определяется как отношение количества ионизированных атомов к общему количеству атомов в единице объема
Чем сильнее ионизирована плазма, тем выше ее электропроводность. Кроме того, ей присуща высокая подвижность.
Электрический ток в вакууме
Важнейшими приборами в электронике первой половины ХХ в. были электронные лампы, в которых использовался электрический ток в вакууме. Однако им на смену пришли полупроводниковые приборы. Но и сегодня ток в вакууме используется в электронно-лучевых трубках, при вакуумном плавлении и сварке, в том числе в космосе, и во многих других установках
Это и определяет важность изучения электрического тока в вакууме
Вакуум (от лат. vacuum — пустота) — состояние газа при давлении, меньшем атмосферного. Это понятие применяется к газу в замкнутом сосуде или в сосуде, из которого откачивают газ, а часто и к газу в свободном пространстве, например к космосу. Физической характеристикой вакуума есть соотношение между длиной свободного пробега молекул и размером сосуда, между электродами прибора и т.д
Когда речь идет о вакууме, то почему-то считают, что это совсем пустое пространство. На самом же деле это не так. Если из какого-нибудь сосуда откачивать воздух то количество молекул в нем с течением времени будет уменьшаться, хотя все молекулы из сосуда удалить невозможно. Так когда же можно считать, что в сосуде создан вакуум?
Молекулы воздуха, двигаясь хаотически, часто сталкиваются между собой и со стенками сосуда. Между такими столкновениями молекулы пролетают определенные расстояния, которые называются длиной свободного пробега молекул. Понятно, что при откачивании воздуха концентрация молекул (их количество в единице объема) уменьшается, а длина свободного пробега — увеличивается. И вот наступает момент, когда длина свободного пробега становится равной размерам сосуда: молекула движется от стенки к стенке сосуда, практически не встречаясь с другими молекулами. Вот тогда-то и считают, что в сосуде создан вакуум, хотя в нем еще может быть много молекул. Понятно, что в меньших по размерам сосудах вакуум создается при больших давлениях газа в них, чем в больших сосудах. Если продолжать откачивание воздуха из сосуда, то говорят, что в нем создается более глубокий вакуум. При глубоком вакууме молекула может много раз пролететь от стенки к стенке, прежде чем встретится с другой молекулой. Откачать все молекулы из сосуда практически невозможно. Где берутся свободные носители зарядов в вакууме? Если в сосуде создан вакуум, то в нем все же есть немало молекул, некоторые из них могут быть и ионизированы. Но заряженных частичек в таком сосуде для выявления заметного тока мало. Как же получить в вакууме достаточное количество свободных носителей заряда? Если нагреть проводник, пропуская по нему электрический ток или другим способом , то часть свободных электронов в металле будет иметь достаточную энергию, чтобы выйти из металла (выполнить работу выхода).
Эффект Мейснера. Сверхпроводники I и II рода
Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный — сверхпроводниками второго рода. Однако стоит отметить, что в низких магнитных полях полным эффектом Мейснера обладают все типы сверхпроводников.
У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей вихрей Абрикосова . Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода, хотя движение вихрей под действием текущего тока создаёт эффективное сопротивление в виде диссипативных потерь на передвижение магнитного потока внутри сверхпроводника, чего избегают вводом в структуру сверхпроводника дефектов — центров пиннинга , за которые вихри «цепляются».
Сверхпроводимость при комнатной температуре. Получен сверхпроводник работающий при комнатной температуре
Сверхпроводимость — это одно из самых загадочных, замечательных и перспективных явлений. Сверхпроводящие материалы, не имеющие электрического сопротивления, могут проводить ток практически без потерь, и это явление уже используется в практических целях в некоторых областях, к примеру, в магнитах установок ядерной томографии или ускорителей частиц. Однако, существующие сверхпроводящие материалы для того, чтобы обрести свои свойства, должны быть охлаждены до крайне низких температур. Но эксперименты, проведенные учеными в течение этого и прошлого года, привели к получению некоторых неожиданных результатов, которые могут изменить положение, в котором находятся сейчас технологии использования сверхпроводников.
Международная группа ученых, возглавляемая учеными из института Структуры и динамики материи Макса Планка (Max Planck Institute for the Structure and Dynamics of Matter), работая с одним из самых перспективных материалов — высокотемпературным сверхпроводником окисью меди-бария-иттрия (YBa2Cu3O6+x, YBCO), обнаружила, что воздействие на этот керамический материал импульсов света инфракрасного лазера заставляет некоторые атомы этого материала кратковременно изменить свое положение в кристаллической решетке, увеличивая проявление эффекта сверхпроводимости.
Кристаллы соединения YBCO имеют весьма необычную структуру. Снаружи этих кристаллов присутствует слой окиси меди, покрывающий собой промежуточные слои, в которых содержатся барий, иттрий и кислород. Эффект сверхпроводимости при облучении светом лазера возникает именно в верхних слоях окиси меди, в которых происходит интенсивное формирование пар электронов, так называемых пар Купера. Эти пары могут перемещаться между слоями кристалла за счет эффекта туннелирования, и это указывает на квантовую природу наблюдаемых эффектов. И в обычных условиях кристаллы YBCO становятся сверхпроводниками только при температуре, ниже критической точки этого материала.
В экспериментах, проведенных в 2013 году, ученые обнаружили, что освещение кристалла YBCO импульсами мощного инфракрасного лазера заставляет материал кратковременно становиться сверхпроводником и при комнатной температуре. Очевидно, что лазерный свет оказывает влияние на сцепление между слоями материала, хотя механизм этого влияния остается пока еще не до конца ясным. И для выяснения всех подробностей происходящего ученые обратились к возможностям лазера LCLS, самого мощного на сегодняшний день рентгеновского лазера.
Полученные результаты показали, что импульс инфракрасного света не только возбудил и заставил колебаться атомы, его воздействие привело к смещению из положения в кристаллической решетке. Это сделало на очень кроткое время меньшим расстояние между слоями оксида меди и другими слоями кристалла, что в свою очередь привело к увеличению проявления эффекта квантового сцепления между ними. В результате этого кристалл становится сверхпроводником при комнатной температуре, правда это его состояние способно держаться всего несколько пикосекунд времени.
Сверхпроводники в переменном электрическом поле
Кроме сверхпроводимости и эффекта Мейснера, сверхпроводники обладают рядом других свойств. Стоит отметить следующее — нулевое сопротивление сверхпроводников характерно только при постоянном токе. Переменное электрическое поле делает сопротивление сверхпроводника ненулевым и оно растет, с увеличением частоты поля.
Также как двухжидкостная модель разделяет сверхтекучий материал на область сверхтекучести и область обычного вещества, так разделяется и поток электронов на сверхпроводящие и обычные. Постоянно поле ускоряло бы сверхпроводящие электроны до бесконечности (учитывая их нулевое сопротивление), что невозможно, потому оно обращается в ноль при попадании в сверхпроводник. Так как постоянное электрическое поле не действует на сверхпроводники, то и обычные электроны не подвержены его воздействию (оно просто выталкивается наружу), а значит движение представлено лишь сверхпроводящими электронами.
В случае с переменным электрическим полем происходит процесс ускорения электронов с последующим замедлением, что физически возможно. В таком случае имеет место и ток обычных электронов, которые обладают свойством сопротивления. Чем выше частота такого поля, тем большее проявляются эффекты, связанные с обычными электронами.
Сверхпроводники в переменном электрическом поле
Кроме сверхпроводимости и эффекта Мейснера, сверхпроводники обладают рядом других свойств. Стоит отметить следующее — нулевое сопротивление сверхпроводников характерно только при постоянном токе. Переменное электрическое поле делает сопротивление сверхпроводника ненулевым и оно растет, с увеличением частоты поля.
Также как двухжидкостная модель разделяет сверхтекучий материал на область сверхтекучести и область обычного вещества, так разделяется и поток электронов на сверхпроводящие и обычные. Постоянно поле ускоряло бы сверхпроводящие электроны до бесконечности (учитывая их нулевое сопротивление), что невозможно, потому оно обращается в ноль при попадании в сверхпроводник. Так как постоянное электрическое поле не действует на сверхпроводники, то и обычные электроны не подвержены его воздействию (оно просто выталкивается наружу), а значит движение представлено лишь сверхпроводящими электронами.
В случае с переменным электрическим полем происходит процесс ускорения электронов с последующим замедлением, что физически возможно. В таком случае имеет место и ток обычных электронов, которые обладают свойством сопротивления. Чем выше частота такого поля, тем большее проявляются эффекты, связанные с обычными электронами.
Эффект Мейснера
Помимо сверхпроводимости, сверхпроводники обладают еще одной отличительной чертой, а именно – эффектом Мейснера. Это явление быстрого затухания магнитного поля в сверхпроводнике. Сверхпроводник является диамагнетиком, то есть в магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, которое полностью компенсирует внешнее.
Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом
Эффект Мейснера пропадает в сильных магнитных полях. В зависимости от типа сверхпроводника (об этом далее) сверхпроводящее состояние при этом либо пропадает полностью (сверхпроводники I-го рода), либо сверхпроводник сегментируется на нормальные и сверхпроводимые области (II-го рода). Именно этот эффект способен объяснить левитацию сверхпроводника над сильным магнитом, либо магнита над сверхпроводником.
Применение сверхпроводников
Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке – маглевы.
На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.
Поезд на магнитном подвеске в Шанхае, Китай
Криотрон – еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой – повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.
Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.
Самая близкая к идеальной сфера из всех когда-либо созданных человеком — ротор гироскопа GP-B. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.
Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.
Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.
Сверхпроводимость графена
За последние несколько лет известность графена значительно возросла. Напомним, что графен представляет собой слой модифицированного углерода, толщиной в один атом. В первую очередь, этому поспособствовало открытие углеродных нанотрубок – специфическому сверхпрочному материалу, который создается посредством сворачивания одного или нескольких слоев графена.
Крупномасштабная симуляция структуры, сформированной, когда одна решетка графена повернута под «магическим углом» относительно второй решетки графена
В 2018-м году группа исследователей из Массачусетского технологического института и Гарвардского университета под руководством профессора Пабло Джарилло-Эрреро, обнаружила, что при вращении под определенном («магически») углом, два листа графена полностью лишены электропроводимости. Когда исследователи применили к материалу напряжение, добавив небольшое количество электродов к этой графеновой конструкции, они обнаружили, что на определенном уровне электроны вырвались из исходного изолирующего состояния и протекали без сопротивления. Важнейшей особенностью данного явления является то, что сверхпроводимость указанной графеновой конструкции была получена при комнатной температуре. И хотя объяснение данного эффекта все еще остается под вопросом, его потенциал в сфере энергоснабжения довольно высок.
Сверхпроводимость графена
За последние несколько лет известность графена значительно возросла. Напомним, что графен представляет собой слой модифицированного углерода, толщиной в один атом. В первую очередь, этому поспособствовало открытие углеродных нанотрубок – специфическому сверхпрочному материалу, который создается посредством сворачивания одного или нескольких слоев графена.
Крупномасштабная симуляция структуры, сформированной, когда одна решетка графена повернута под «магическим углом» относительно второй решетки графена
В 2018-м году группа исследователей из Массачусетского технологического института и Гарвардского университета под руководством профессора Пабло Джарилло-Эрреро, обнаружила, что при вращении под определенном («магически») углом, два листа графена полностью лишены электропроводимости. Когда исследователи применили к материалу напряжение, добавив небольшое количество электродов к этой графеновой конструкции, они обнаружили, что на определенном уровне электроны вырвались из исходного изолирующего состояния и протекали без сопротивления. Важнейшей особенностью данного явления является то, что сверхпроводимость указанной графеновой конструкции была получена при комнатной температуре. И хотя объяснение данного эффекта все еще остается под вопросом, его потенциал в сфере энергоснабжения довольно высок.
Момент Лондона
Еще одно интересное свойство сверхпроводника – момент Лондона. Суть феномена заключается в том, что вращающийся сверхпроводник создает магнитное поле, которое выравнивается точно вдоль оси вращения проводника.
Дальнейшее исследование этого явления привело к открытию гравити магнитного момента Лондона. В2006-м году исследователи Мартин Таджмар из института ARC Seibersdorf Research, Австрия, и Кловис де Матос из Европейского космического агентства (ESA) обнаружили, что вращающийся с ускорением сврехпроводник генерирует также и гравитационное поле. Однако такое гравитационное поле слабее земного примерно в 100 миллионов раз.
Теоретическое объяснение эффекта сверхпроводимости
Феноменологический подход. Хоть Камерлинг-Оннес и является первооткрывателем сверхпроводимости, первая теория сверхпроводимости впервые была предложена в 1935-м году немецкими физиками и братьями Фрицом и Гайнцом Лондонами. Ученые стремились математически записать такие свойства сверхпроводника как сверхпроводимость и эффект Мейснера, не вникая в микроскопические причины сверхпроводимости, феноменологически. Выведенные уравнения позволяли объяснить эффект Мейснера так, что внешнее магнитное поле могло проникать в сверхпроводник только на определенную глубину, зависящую от так называемой лондоновской глубины проникновения. Для объяснения сверхпроводимости, потребовалось предположение о том, что носителями тока в сверхпроводнике, как и в металле, являются электроны. При этом, нулевое сопротивление означает то, что электрон не испытывает столкновений во время своего движения. Так как это относится ко всем электронам проводимости, то имеет место ток электронов без сопротивления.
Очевидно, что данная теория не объясняет саму природу данного явления, а лишь описывает его и позволяет предсказывать его поведение в ряде случаев. Более глубокая, но также, феноменологическая теория была предложена в 1950-м году советскими физиками-теоретиками Левом Ландау и Виталием Гнизбургом.
Куперовская пара электронов, движущаяся сквозь решетку из положительных атомов. Первый электрон искажает решетку, создавая область повышенного положительного заряда, в которую втягивается второй электрон.
Теория БКШ. Первое качественное объяснение явлению сверхпроводимости было предложено в рамках так называемой теории БКШ, построенной американскими физиками Джоном Бардином, Леоном Купером и Джоном Шриффером. Эта теория выходит из предположения, что между электронами при определенных условиях может возникать притяжение. Притяжение, которое обусловлено различными возбуждениями, в первую очередь – колебаниями кристаллической решетки, способно создавать «куперовские пары» — связанные состояния двух электронов в кристалле. Такая пара может двигаться в кристалле, не рассеиваясь ни на колебания кристаллической решетки, ни на примеси. В веществах с температурой, далекой от нуля, достаточно энергии, чтобы «разорвать» такую пару электронов, в то время как при низких температурах система не обладает достаточной энергией. В результате этого возникает поток связанных электронов – куперовских пар, которые практически не взаимодействуют с веществом. В 1972-м году Д. Бардин, Л. Купер и Д. Шриффер получили Нобелевскую премию по физике.
Позднее советский физик-теоретик Николай Боголюбов усовершенствовал теорию БКШ. В своих работах ученый подробно описал условия, при которых могут образовываться куперовские пары (энергия близкая к энергии Ферми, определенные спины и др.) в результате квантовых эффектов. По отдельности электроны представляют собой частицы с полуцелым спином (фермионы), которые неспособны образовывать конденсат Бозе-Эйнштейна и переходить в сверхтекучее состояние. Когда же имеется куперовская пара электронов, то она представляет собой квазичастицу с целым спином и является бозоном. При определенных условиях бозоны способны формировать конденсат Бозе-Эйнштейна, то есть вещество, частицы которого занимают одно и то же состояние, что приводит к возникновению сверхтекучести. Такая сверхтекучесть электронов и объясняет эффект сврехпроводимости.
Классификация сверхпроводников
Существует несколько классификаций сверхпроводников, которые опираются на такие критерии:
- Реакция на магнитное поле. Это свойство делит сверхпроводники на две категории. Сверхпроводники I-го рода имеют некоторое одно критическое значение магнитного поля, превысив которое, они теряют сверхпроводимость. II-го рода – имеют два предельных значения магнитного поля. При применении магнитного поля, ограниченного этими значениями, к сверхпроводникам этой категории, поле частично проникает внутрь, при этом сохраняя сверхпроводимость.
- Критическая температура. Различают низкотемпературные и высокотемпературные сверхпроводники. Первые обладают свойством сверхпроводимости при температурах ниже −196 °C или 77 К. Высокотемпературным сверхпроводникам достаточно температуры выше указанной. Такое разделение имеет место, так как высокотемпературные сверхпроводники могут применяться на практике в качестве охладителей.
- Материал. Здесь выделяют такие разновидности как: чистый химический элемент (вроде ртути или свинца), сплавы, керамика, органические или на основе железа.
- Теоретическое описание. Как известно, любая физическая теория имеет определенную область применения. По этой причине, для дальнейшего применения, имеет смысл разделять сверхпроводники по теориям, которые способны описать их природу.
История пятая: Спин-орбитальное взаимодействие
Сверхпроводник: арсениды железа — LiFeAs и другие.
Механизм: спин-орбитальное взаимодействие коррелирует с величиной сверхпроводящей щели (т.е. и с критической температурой).
Статья Shun-Tsung Lo et.al Spin-orbit-coupled superconductivity / Scientific Reports 4, 5438 (2014).
M. W. Haverkort et. al Strong spin—orbit coupling effects on the Fermi surface of SrRuO and SrRhO / Phys. Rev. Lett. 101, 026406 (2008).
S. V. Borisenko et. al Direct observation of spin—orbit coupling in iron-based superconductors / Nature Physics, 12, 311–317 (2015).
От комнатной температуры до критической. Спин-орбитальное взаимодействие оказывает влияние на электронный спектр, тем самым «вмешиваясь» в проводящие свойства. Это явление — взаимодействие между движущимся электроном и его же собственным спином — проявляется наиболее сильно при высоких скоростях движения электрона (в квантовой физике оперируют понятием импульс), то есть является релятивистским эффектом. Оно влияет на электронные свойства всех соединений, но его вклад тем больше, чем выше порядковый номер атома в таблице Менделеева, поскольку «скорости» движения электронов на более высоких энергетических уровнях гораздо выше. В LiFeAs и других сверхпроводящих арсенидах железа вклад спин-орбитального взаимодействия оказывается достаточным, чтобы заметно влиять на электронную структуру. Представьте, что вы держите в руках пластилиновый шарик. Действие спин-орбитального взаимодействия на электронную структуру тогда можно представить, как будто вы создаете на этом шарике пальцами вмятины и выпуклости, тем самым, искажая его первоначальную форму.
В качестве заключения можно сказать, что в наших рассказах перечислены лишь немногие из возможных процессов, которые в итоге приводят к сверхпроводимости. Все они, в том числе и классический электрон-фононный механизм, могут сочетаться в одном материале, либо какой-то из них будет основным для конкретного вещества. Может быть, все эти многочисленные и сложные механизмы — лишь часть какого-нибудь глобального физического закона, который ученым еще предстоит открыть. Но может оказаться и так, что природа гораздо сложнее и многограннее, чем мы можем себе представить, и никакого единого закона сверхпроводимости попросту не существует.
История вторая: магноны
Сверхпроводник: ZrZn2 и другие.
Механизм: образование триплетных куперовских пар за счет явления ферромагнетизма коллективизированных электронов.
Статья: C. Pfleiderer et. al Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2 / Nature 412, 58-61 (2001).
D. Fay and J. Appel Coexistence of p-state superconductivity and itinerant ferromagnetism / Phys. Rev. B 22, 3173 (1980).
Комнатная температура, парамагнетик-металл.
На электрон в твердом теле действуют силы кулоновского отталкивания других электронов, притяжения ионов кристаллической решетки, а также силы обменного взаимодействия между электронами. Последние имеют чисто квантовую природу и обусловлены наличием у электронов спина— собственного момента импульса, принимающего значения ±½. Именно обменные взаимодействия чаще всего становятся причиной магнитного упорядочения в материалах — класса явлений, которые известны как ферро-, ферри- и антиферромагнетизм. Во многих случаях эти явления возникают, когда вещество не является проводником, то есть электроны в нем локализованы, или «прикреплены» к определенному иону. В данной истории речь пойдет о ферромагнетизме коллективизированных электронов, то есть «подвижных» — отвечающих за проводимость.
Температура ферромагнитного упорядочения, ферромагнетик-металл.
Обменное взаимодействие электронов в проводнике в некоторых случаях может привести к тому, что спины электронов, хаотично «летающих» туда-сюда в обычном проводнике, вдруг станут «смотреть» в одном и том же направлении. В принципе, похожую ситуацию можно наблюдать в бегущей толпе испуганных людей. Отдельный человек в толпе может бежать в совершенно хаотичном направлении, сталкиваться с другими людьми, стенами и оградами, вызывая эффект, схожий с сопротивлением в обычных металлах. Но при этом, скорее всего, большинство людей будет бежать с помощью ног, а не рук, поэтому их «спины» — направление от ног к голове — будут совпадать. Таким образом, если температура (средняя скорость людей в толпе) достаточно низкая, большинство электронных спинов будет сонаправлено и такой материал будет являться ферромагнитным металлом.
Классификация сверхпроводников
Существует несколько классификаций сверхпроводников, которые опираются на такие критерии:
- Реакция на магнитное поле. Это свойство делит сверхпроводники на две категории. Сверхпроводники I-го рода имеют некоторое одно критическое значение магнитного поля, превысив которое, они теряют сверхпроводимость. II-го рода – имеют два предельных значения магнитного поля. При применении магнитного поля, ограниченного этими значениями, к сверхпроводникам этой категории, поле частично проникает внутрь, при этом сохраняя сверхпроводимость.
- Критическая температура. Различают низкотемпературные и высокотемпературные сверхпроводники. Первые обладают свойством сверхпроводимости при температурах ниже −196 °C или 77 К. Высокотемпературным сверхпроводникам достаточно температуры выше указанной. Такое разделение имеет место, так как высокотемпературные сверхпроводники могут применяться на практике в качестве охладителей.
- Материал. Здесь выделяют такие разновидности как: чистый химический элемент (вроде ртути или свинца), сплавы, керамика, органические или на основе железа.
- Теоретическое описание. Как известно, любая физическая теория имеет определенную область применения. По этой причине, для дальнейшего применения, имеет смысл разделять сверхпроводники по теориям, которые способны описать их природу.