Сверхпроводники, работающие при комнатной температуре

Текущее исследование

Вопрос о том, как возникает сверхпроводимость в высокотемпературных сверхпроводниках, является одной из основных нерешенных проблем теоретической физики конденсированного состояния . Механизм, который заставляет электроны в этих кристаллах образовывать пары, неизвестен. Несмотря на интенсивные исследования и множество многообещающих выводов, объяснение до сих пор ускользает от ученых. Одна из причин этого заключается в том, что рассматриваемые материалы, как правило, представляют собой очень сложные многослойные кристаллы (например, BSCCO ), что затрудняет теоретическое моделирование.

Улучшение качества и разнообразия образцов также дает повод для значительных исследований, как с целью улучшения характеристик физических свойств существующих соединений, так и для синтеза новых материалов, часто с надеждой на увеличение T c . Технологические исследования сосредоточены на производстве ВТСП-материалов в количествах, достаточных для того, чтобы их использование было экономически целесообразным, и оптимизации их свойств в зависимости от применения .

Классификация сверхпроводников

Существует несколько  классификаций сверхпроводников, которые опираются на такие критерии:

  1. Реакция на магнитное поле. Это свойство делит сверхпроводники на две категории. Сверхпроводники I-го рода имеют некоторое одно критическое значение магнитного поля, превысив которое, они теряют сверхпроводимость. II-го рода – имеют два предельных значения магнитного поля. При применении магнитного поля, ограниченного этими значениями, к сверхпроводникам этой категории, поле частично проникает внутрь, при этом сохраняя сверхпроводимость.
  2. Критическая температура. Различают низкотемпературные и высокотемпературные сверхпроводники. Первые обладают свойством сверхпроводимости при температурах ниже −196 °C или 77 К. Высокотемпературным сверхпроводникам достаточно температуры выше указанной. Такое разделение имеет место, так как высокотемпературные сверхпроводники могут применяться на практике в качестве охладителей.
  3. Материал. Здесь выделяют такие разновидности как: чистый химический элемент (вроде ртути или свинца), сплавы, керамика, органические или на основе железа.
  4. Теоретическое описание. Как известно, любая физическая теория имеет определенную область применения. По этой причине, для дальнейшего применения, имеет смысл разделять сверхпроводники по теориям, которые способны описать их природу.

Применение сверхпроводников

Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке – маглевы.

На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.

Поезд на магнитном подвеске в Шанхае, Китай

Криотрон – еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой – повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.

Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.

Самая близкая к идеальной сфера из всех когда-либо созданных человеком — ротор гироскопа GP-B. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.

Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.

Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.

История открытия

Одним из вопросов, которые интересовали Камерлинг-Оннеса, было изучение сопротивления металлов при сверхнизких температурах. Было известно, что с ростом температуры электрическое сопротивление также растет. Следовательно, можно ожидать, что с уменьшением температуры будет наблюдаться обратный эффект.

Экспериментируя с ртутью в 1911-м году, ученый довел ее до замерзания и продолжил понижать температуру. При достижении 4,2 К устройство перестало фиксировать сопротивление. Оннес заменял устройства в исследовательской установке, поскольку побаивался их неисправности, однако устройства неизменно показывали нулевое сопротивление, несмотря на то, что до абсолютного нуля оставалось еще 4 К.

После открытия сверхпроводимости ртути возникло большое количество вопросов. Среди них: «свойственна ли сверхпроводимость другим веществам, помимо ртути?» или «сопротивление снижается до нуля, либо оно настолько мало, что устройства, которые существуют, не могут его измерить.

Оннес предложил оригинальное исследование с непрямым измерением, до какого уровня понижается сопротивление. Возбужденный в полупроводниковой цепи электрический ток, который был измерен при помощи отклонения магнитной стрелки, не затухал несколько лет. Согласно результатам этого эксперимента, полученное посредством расчетов удельное электрическое сопротивление сверхпроводника равнялось 10−25 Ом•м. По сравнению с удельным электрическим сопротивлением меди (1.5۰10−8 Ом•м) данная величина меньше на 7 порядков, что делает ее практически нулевой.

Предыстория

С введением в физику такого понятия как «абсолютный ноль» ученые стали все больше исследовать свойства веществ при низкой температуре, когда движение молекул практически отсутствует. Для достижения низких температур требуется проведение такого процесса, как «сжижение газа». При испарении такой газ отбирает энергию у тела, которое погружено в этот газ, так как для отрыва молекул от жидкости требуется энергия. Подобные процессы протекают в бытовых холодильниках, где сжиженный газ фреон испарятся в морозилке.

В конце XIX – начале XX столетия уже были получены такие сжиженные газы как кислород, азот, водород. Долгое время не поддавался сжижению гелий, при этом ожидалось, что он поможет достичь минимальной температуры.

Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом (слева)

Успех в сжижении гелия был достигнут голландским физиком Хейке Камерлинг-Оннесем в 1908-м году, который работал в Лейденском университете (Нидерланды). Сжиженный гелий позволял достичь рекордно низкой температуры – около 4 К. Получив жидкий гелий, ученый начал заниматься изучением свойств разных материалов при гелиевых температурах.

Сверхпроводимость графена

За последние несколько лет известность графена значительно возросла. Напомним, что графен представляет собой слой модифицированного углерода, толщиной в один атом. В первую очередь, этому поспособствовало открытие углеродных нанотрубок – специфическому сверхпрочному материалу, который создается посредством сворачивания одного или нескольких слоев графена.

Крупномасштабная симуляция структуры, сформированной, когда одна решетка графена повернута под «магическим углом» относительно второй решетки графена

В 2018-м году группа исследователей из Массачусетского технологического института и Гарвардского университета под руководством профессора Пабло Джарилло-Эрреро, обнаружила, что при вращении под определенном («магически») углом, два листа графена полностью лишены электропроводимости. Когда исследователи применили к материалу напряжение, добавив небольшое количество электродов к этой графеновой конструкции, они обнаружили, что на определенном уровне электроны вырвались из исходного изолирующего состояния и протекали без сопротивления. Важнейшей особенностью данного явления является то, что сверхпроводимость указанной графеновой конструкции была получена при комнатной температуре. И хотя объяснение данного эффекта все еще остается под вопросом, его потенциал в сфере энергоснабжения довольно высок.

Характеристики

К сожалению, класс «высокотемпературных» сверхпроводников имеет множество определений в контексте сверхпроводимости.

Маркировка high- T c должна быть зарезервирована для материалов с критическими температурами выше точки кипения жидкого азота . Тем не менее, количество материалов — в том числе оригинальных открытий и недавно обнаруженная pnictide сверхпроводников — имеет критические температуры ниже 77 К , но , тем не менее, обычно называет в публикациях , как высокий Т гр класс.

Вещество с критической температурой выше точки кипения жидкого азота вместе с высоким критическим магнитным полем и критической плотностью тока (выше которой разрушается сверхпроводимость) принесло бы большую пользу технологическим приложениям. В магнитных приложениях высокое критическое магнитное поле может оказаться более ценным, чем само высокое значение T c . Некоторые купраты имеют верхнее критическое поле около 100 тесла. Однако купратные материалы представляют собой хрупкую керамику, которую дорого производить, и которую нелегко превратить в проволоку или другую полезную форму. Кроме того, высокотемпературные сверхпроводники не образуют больших сплошных сверхпроводящих доменов, а скорее кластеры микродоменов, внутри которых возникает сверхпроводимость. Поэтому они не подходят для применений, требующих наличия реальных сверхпроводящих токов, таких как магниты для спектрометров магнитного резонанса . Для решения этой проблемы (порошки) см. HTS_wire .

Было много споров относительно сосуществования высокотемпературной сверхпроводимости с магнитным упорядочением в YBCO, сверхпроводниках на основе железа , некоторых рутенкупратах и ​​других экзотических сверхпроводниках, и продолжаются поиски других семейств материалов. ВТСП — это сверхпроводники второго типа , которые позволяют магнитным полям проникать в их внутреннюю часть в квантованных единицах потока, а это означает, что для подавления сверхпроводимости требуются гораздо более высокие магнитные поля. Слоистая структура также дает направленную зависимость отклика магнитного поля.

Сверхпроводники

Без подробного теоретического понимания возникновения этого явления — хотя существенный прогресс делается постоянно — ученые иногда чувствуют, что занимаются гаданием на кофейной гуще, пытаясь подобрать подходящие материалы. Это похоже на попытку угадать номер телефона, который составлен из таблицы периодических элементов вместо цифр. Но перспектива остается и очень волнует. Нобелевская премия и дивный, новый мир энергии и электричества — неплохая награда за успешный результат.

Это может быть будущим.

В некоторых исследованиях основное внимание уделяется купратам, сложным кристаллам, содержащим слои меди и атомов кислорода. Соединение купратов с различными элементами, экзотическими соединениями вроде ртуть-барий-кальций-медь оксида, создают лучшие сверхпроводники, известные сегодня

Ученые также продолжают сообщать аномальные и неожиданные новости о том, что пропитанный водой графит может выступать в качестве сверхпроводника, работающего при комнатной температуре, но нет никаких указателей на то, что эти новости можно положить в основу технологий.

В начале 2017 года, исследуя самые экстремальные и экзотические формы материи, которые мы можем создать на Земле, ученые умудрились сжать водород до состояния металла. Для этого им понадобилось давление, превышающее давление в ядре Земли и в тысячи раз большее, чем на дне океана. Некоторые ученые в этой области — физике конденсированной материи — вообще сомневаются, что металлический водород удалось произвести.

Однако полагается, что металлический водород может быть сверхпроводником, работающим при комнатной температуре. Но работа с образцами оказывается очень сложной, потому что даже алмазы, содержащие металлический водород, не выдерживают катастрофического давления.

Сверхпроводимость — или поведение, сильно ее напоминающее, — также наблюдалась у иттрий-барий-медь оксида при комнатной температуре в 2014 году. Проблема лишь в том, что транспорт электрона проходил лишь крошечную долю секунды и требовал бомбардировки материала лазерными импульсами.

Эффект Мейснера

Помимо сверхпроводимости, сверхпроводники обладают еще одной отличительной чертой, а именно – эффектом Мейснера. Это явление быстрого затухания магнитного поля в сверхпроводнике. Сверхпроводник является диамагнетиком, то есть в магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, которое полностью компенсирует внешнее.

Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом

Эффект Мейснера пропадает в сильных магнитных полях. В зависимости от типа сверхпроводника (об этом далее) сверхпроводящее состояние при этом либо пропадает полностью (сверхпроводники I-го рода), либо сверхпроводник сегментируется на нормальные и сверхпроводимые области (II-го рода). Именно этот эффект способен объяснить левитацию сверхпроводника над сильным магнитом, либо магнита над сверхпроводником.

История

Теоретическое предсказание

Теоретическое предсказание существования графана обычно приписывается профессору Хорхе О. Софо в 2007 году; однако четыре года назад японская команда сделала это предсказание без использования слова «графан». Графан был впервые получен в начале 2009 года международной командой, состоящей из двух соавторов графена: Андре Гейма и Константина Новоселова , лауреатов Нобелевской премии по физике 2010 года.

Синтез графана

Графан получали следующим способом. Образцы графена сначала нагревали при 300  ° C в течение 4 часов в газообразном аргоне для удаления любых примесей. Затем образцы помещались в холодную водородную плазму , а точнее в смесь аргона (90%) и водорода (10%) при низком давлении ( 0,1  мбар ). Листы графена помещались между двумя алюминиевыми электродами в 30  см от зоны разряда (что позволяло ионизировать молекулы двухатомного водорода), чтобы избежать возможного повреждения слишком энергичными ионами. Обычно требуется два часа, чтобы гидрогенизация считалась достаточной. Измерения удельного сопротивления прежде всего доказали, что графен химически реакционноспособен, но, прежде всего, что процесс гидрирования графена обратим простым нагреванием при высокой температуре. Эти первые результаты были подтверждены рамановской спектроскопией , которая также подтвердила, что гидрирование с обеих сторон графеновой плоскости дает вдвое больший сигнал, чем одностороннее гидрирование. Наконец, уменьшение параметра сетки было подтверждено топографическими измерениями с помощью ПЭМ .

Приложения

Хранение водорода

Самая интересная особенность, обнаруженная командой, которая впервые синтезировала графан, заключается в том, что процесс присоединения атомов водорода к графену можно обратить вспять, просто нагревая графан. Эта обратимость делает графан перспективным материалом для хранения больших количеств легко выделяемого водорода в небольшом объеме. Таким образом, это могло бы улучшить производительность современных дигидрогенных топливных элементов . К сожалению, необходимо иметь в виду, что затраты на производство графена сегодня все еще слишком высоки, чтобы рассматривать его распространение в промышленных масштабах (несколько миллионов долларов за несколько квадратных сантиметров). Одна из возможностей, по мнению профессора Кацнельсона, — это обойтись многослойными листами графена, которые намного проще производить.

Наноэлектроника

Второе применение графана — его использование в качестве основного материала в микро- и наноэлектронике. Действительно, его широкозонный полупроводниковый характер может служить основой для многих механизмов. Тот факт, что высоту зазора можно регулировать простой скоростью гидрирования или обрезкой нанополоски в большей или меньшей степени, делает графан особенно интересным полупроводником. Кроме того, хотя оба полупроводника, графен и графан имеют очень разные энергетические щели (в основном нулевые для графена; 5,97  эВ для графана). Механизмы, сочетающие эти два материала, очень подходят для получения желаемой электронной проводимости. Недавно иранская группа ученых доказала возможность создания PN-перехода на основе графана путем простого дегидрирования. Другой подчеркнул его сверхпроводящее поведение при p-легировании; критическая температура достигнет 90  К (значительно выше точки кипения азота ). Наконец, теоретические работы Э. Пенева и А. Сингха демонстрируют, что локализованное дегидрирование графана показывает, что домены графена ведут себя как квантовые точки, тем самым открывая новый путь в передовых исследованиях полупроводников.

Хранилище данных

Намагничивающие способности графана за счет простой десорбции атомов водорода делают его подходящим материалом для хранения данных. Удаление атомов водорода с поверхности уже освоено различными методами (например, с помощью лазерного луча).

Проблема «H-расстройства»

Во время этих исследований графана экспериментатор может столкнуться с серьезной проблемой, которая в настоящее время препятствует производству идеального листа графана. Действительно, равномерное покрытие графенового слоя атомами водорода представляет проблему. Гидрирование не совсем упорядочено, но теоретические исследования показывают процесс роста гидрогенизированных доменов вокруг нескольких начальных связей CH. Когда два домена встречаются, может случиться так, что перекрытие станет несовместимым с последовательностью чередующихся связей на каждой стороне плоскости. Мы говорим о «Н-расстройстве». Таким образом, на уровне стенок между доменами структура нарушается и параметр сетки уменьшается. Таким образом, с первых моментов процесса гидрирования присутствует несовместимость доменов, и, к сожалению, очень маловероятно, что будет получен идеальный лист графана. Разочарование будет присутствовать всегда.

Теоретическое объяснение эффекта сверхпроводимости

Феноменологический подход. Хоть Камерлинг-Оннес и является первооткрывателем сверхпроводимости, первая теория сверхпроводимости впервые была предложена в 1935-м году немецкими физиками и братьями Фрицом и Гайнцом Лондонами. Ученые стремились математически записать такие свойства сверхпроводника как сверхпроводимость и эффект Мейснера, не вникая в микроскопические причины сверхпроводимости, феноменологически. Выведенные уравнения позволяли объяснить эффект Мейснера так, что внешнее магнитное поле могло проникать в сверхпроводник только на определенную глубину, зависящую от так называемой лондоновской глубины проникновения. Для объяснения сверхпроводимости, потребовалось предположение о том, что носителями тока в сверхпроводнике, как и в металле, являются электроны. При этом, нулевое сопротивление означает то, что электрон не испытывает столкновений во время своего движения. Так как это относится ко всем электронам проводимости, то имеет место ток электронов без сопротивления.

Очевидно, что данная теория не объясняет саму природу данного явления, а лишь описывает его и позволяет предсказывать его поведение в ряде случаев. Более глубокая, но также, феноменологическая теория была предложена в 1950-м году советскими физиками-теоретиками Левом Ландау и Виталием Гнизбургом.

Куперовская пара электронов, движущаяся сквозь решетку из положительных атомов. Первый электрон искажает решетку, создавая область повышенного положительного заряда, в которую втягивается второй электрон.

Теория БКШ. Первое качественное объяснение явлению сверхпроводимости было предложено в рамках так называемой теории БКШ, построенной американскими физиками Джоном Бардином, Леоном Купером и Джоном Шриффером. Эта теория выходит из предположения, что между электронами при определенных условиях может возникать притяжение. Притяжение, которое обусловлено различными возбуждениями, в первую очередь – колебаниями кристаллической решетки, способно создавать «куперовские пары» — связанные состояния двух электронов в кристалле. Такая пара может двигаться в кристалле, не рассеиваясь ни на колебания кристаллической решетки, ни на примеси. В веществах с температурой, далекой от нуля, достаточно энергии, чтобы «разорвать» такую пару электронов, в то время как при низких температурах система не обладает достаточной энергией. В результате этого возникает поток связанных электронов – куперовских пар, которые практически не взаимодействуют с веществом. В 1972-м году Д. Бардин, Л. Купер и Д. Шриффер получили Нобелевскую премию по физике.

Позднее советский физик-теоретик Николай Боголюбов усовершенствовал теорию БКШ. В своих работах ученый подробно описал условия, при которых могут образовываться куперовские пары (энергия близкая к энергии Ферми, определенные спины и др.) в результате квантовых эффектов. По отдельности электроны представляют собой частицы с полуцелым спином (фермионы), которые неспособны образовывать конденсат Бозе-Эйнштейна и переходить в сверхтекучее состояние. Когда же имеется куперовская пара электронов, то она представляет собой квазичастицу с целым спином и является бозоном. При определенных условиях бозоны способны формировать конденсат Бозе-Эйнштейна, то есть вещество, частицы которого занимают одно и то же состояние, что приводит к возникновению сверхтекучести. Такая сверхтекучесть электронов и объясняет эффект сврехпроводимости.

Характеристики

В присутствии водорода графен реагирует: электрон атома водорода связывается со свободным электроном графена (электроны проводимости, поставляемые атомами углерода), образуя новую химическую связь. Затем гибридизация атомов углерода изменяется с sp 2 на sp 3 (тетраэдрический углерод). Таким образом, структура полностью насыщена. Эта модификация гибридизации имеет несколько последствий.

Структурные свойства

Во-первых, меняется пространственная структура графена. Это связано с тем, что атомы водорода поочередно связываются с атомами углерода по обе стороны от графеновой плоскости (один из двух). Поэтому они стреляют по обе стороны от средней плоскости, что приводит к модификации атомной структуры. Однако это сжатие сетки компенсируется удлинением CC-связей, которые теперь составляют 1,52  Å (против 1,42  Å в графене) из-за того, что двойная связь короче, чем σ-связь (одинарная).

Электронные свойства

В этом случае структура графана напоминает структуру алмаза , изолирующего аллотропа с большой запрещенной зоной. Поэтому неудивительно, что графан эффективно характеризуется изоляционными свойствами с примечательной особенностью, заключающейся в том, что ширину зазора можно регулировать путем добавления большего или меньшего количества водорода. Это одна из причин, почему в статьях все чаще говорится о графане как о полупроводниковом материале . Фактически адсорбция водорода, сопровождающаяся изменением гибридизации, сдвигает π-зоны проводимости, открывая энергетическую щель в зонной структуре . Энергетическая щель в точке Γ (центр первой зоны Бриллюэна ) тогда составляет 3,5  эВ (скорректированное значение будет 5,97  эВ ).

Магнитные свойства

Идеальный графан полностью немагнитен: все электроны участвуют в связях CC и CH. Удаление атома водорода вызывает изменение электронной конфигурации sp 2 , с повторным появлением перпендикулярной орбитали pz. Таким образом, этот вакантный участок представляет собой неспаренный электрон, который генерирует магнитный момент 1 мкБ ( магнетон Бора ). Отсутствие атомов водорода в графане может привести к возникновению определенных магнитных структур. Они зависят от формы и размера области, где проводилось дегидрирование. Эти результаты намагничивания, контролируемого дегидрированием, хотя и являются чисто теоретическими, вдохновляют авторов, которые объясняют, что листы графана могут затем использоваться для хранения данных, иметь применение в спинтронике или даже использоваться в качестве нетоксичных маркеров при визуализации.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: