Использование нового материала
По мнению ученых, сенсоры, созданные на основе графена, смогут анализировать прочность и состояние самолета, а также предсказывать землетрясения. Но только тогда, когда материал с такими потрясающими свойствами покинет стены лабораторий, станет понятно, в каком направлении пойдет развитие практического применения данного вещества. На сегодняшний физики, а также инженеры-электронщики уже заинтересовались уникальными возможностями графена. Ведь всего несколькими граммами этого вещества можно покрыть территорию, равную футбольному полю.
Графен и его применение потенциально рассматриваются в производстве легковесных спутников и самолетов. В этой сфере новый материал способен заменить в Нановещество может быть использовано вместо кремния в транзисторах, а его внедрение в пластмассу придаст ей электропроводность.
Графен и его применение рассматриваются и в вопросах изготовления датчиков. Эти устройства, выполненные на основе новейшего материала, будут способны обнаруживать самые опасные молекулы. А вот использование пудры из нановещества при производстве электрических аккумуляторов в разы увеличит их эффективность.
Графен и его применение рассматриваются в оптоэлектронике. Из нового материала получится очень легкий и прочный пластик, контейнеры из которого позволят в течение нескольких недель сохранять продукты в свежем состоянии.
Использование графена предполагается и для изготовления прозрачного токопроводящего покрытия, необходимого для мониторов, солнечных батарей и более крепких и устойчивых к механическим воздействиям ветряных двигателей.
На основе наноматериала получатся лучшие спортивные снаряды, медицинские имплантаты и суперконденсаторы.
Также графен и его применение актуальны для:
Высокочастотных высокомощных электронных устройств;- искусственных мембран, разделяющих две жидкости в резервуаре;- улучшения свойства проводимости различных материалов;- создания дисплея на органических светодиодах;- освоения новой техники ускоренного секвенирования ДНК;- улучшения жидкокристаллических дисплеев;- создания баллистических транзисторов.
Почему по прошествии почти 20 лет с момента открытия графена он так и не вошёл в нашу жизнь?
Графен — это двумерная разновидность углерода, имеющая необычную структуру в виде соединённых в гексагональную решетку атомов. При этом общая её толщина не превышает размеров каждого из них.
Основные преимущества графена перед другими материалами:
- Рекордно высокий показатель теплопроводности;
- Высокие механическая прочность и гибкость материала, в сотни раз превосходящие тот же показатель для стальных изделий;
- Ни с чем несравнимая электропроводимость;
- Высокая температура плавления (более 3 тысяч градусов);
- Непроницаемость и прозрачность.
Помимо замечательных физических свойств графена его также можно использовать в медицине. Последние исследования показывают, что графен способен убивать стволовые раковые клетки — те самые, которые вызывают метастазы…
Так почему же мы ещё не носим графеновую одежду, не пользуемся графеновыми аккумуляторами и не научились лечить онкологию?
На самом деле всё из-за сложности получения графена…
Кстати, графен присутствует в графите, так что если у вас есть дома обычный карандаш — вы можете самостоятельно получить немного графена…
Как получить графен в домашних условиях
- Сначала нужно подготовить тонкую графитовую пластину, которая затем крепится на клеящейся стороне специальной ленты;
- После этого она складывается вдвое, а затем снова возвращается в исходное состояние (её концы разводятся);
- В результате таких манипуляций на клеящей стороне ленты удаётся получить двойной слой графита;
- Если проделать эту операцию несколько раз, несложно будет добиться малой толщины нанесённого слоя материала;
- После этого скотч с расщеплёнными и очень тонкими плёнками прикладывается к подложке из окисла кремния;
- Вследствие этого плёнка частично остаётся на подложке, образуя графеновую прослойку.
Недостатком этого метода является сложность получения достаточно тонкой плёнки заданного размера и формы, которая бы надёжно фиксировались на отведённых для этого частях подложки.
В чём отличие графена от графита?
Начнём с графена. Это моноатомный слой, составленный из атомов углерода, который, как собственно и графит, обладает решёткой в виде сот. Что такое графит? В его слоистой структуре, слои графена сложены друг на друга! В графите, связь слоёв графена реализована посредством весьма слабых Ван-дер-Ваальсовых связей, по этой самой причине есть возможность разъединить их. К примеру, когда мы пишем обыкновенным карандашом, то снимаются слои графита, только вот след от карандаша, оставленный на бумаге, ещё не графен — это графеновая многослойная структура.
Если свести подобную структуру к одному слою — пожалуйста, перед вами настоящий графен. Такие расщепления воплотила в реальность пара Нобелевских лауреатов по физике — Новосёлов и Гейм. Они расщепили графит воспользовавшись скотчем и после того, как учёные досконально изучили свойства этого «графитового слоя», стало известно, что у него великолепные параметры для применения в микроэлектронике.
Эпитаксия и разложение[править]
Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD), рост при высоком давлении и температуре (англ. HPHT). Из этих методов только последний можно использовать для получения плёнок большой площади.
Работы посвящёны получению графена, выращенного на подложках карбида кремния SiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C-стабилизированная или Si-стабилизированная поверхность — в первом случае качество плёнок выше. В работах та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.
Графен можно вырастить на металлических подложках рутения и иридия.
Оксиды наноматериала
Ученые активно исследуют и такую структуру графена, которая внутри или по краям углеродной сетки имеет присоединенные кислородосодержащие функциональные группы или (и) молекулы. Это оксид самого твердого нановещества, который является первым двумерным материалом, дошедшим до стадии коммерческого производства. Из нано- и микрочастиц этой структуры ученые изготовили сантиметровые образцы.
Так, оксид графена в сочетании с диофилизированным углеродом был недавно получен китайскими учеными. Это весьма легкий материал, сантиметровый кубик которого удерживается на лепестках небольшого цветка. Но при этом новое вещество, в котором находится оксид графена, является одним из самых твердых в мире.
Кто вкладывается в изучение графена
В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд . В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.
В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним.
Фото: polit.ru
Область применения
Перечислить все сферы деятельности человека, где на сегодняшний день используются нанотехнологии, невозможно из-за весьма внушительного перечня. Так, при помощи данной области науки производятся:
Устройства, предназначенные для сверхплотной записи любой информации;- различная видеотехника;- сенсоры, полупроводниковые транзисторы;- информационные, вычислительные и информационные технологии;- наноимпринтинг и нанолитография;- устройства, предназначенные для хранения энергии, и топливные элементы;- оборонные, космические и авиационные приложения;- биоинструментарий.
На такую научную область, как нанотехнологии, в России, США, Японии и ряде европейских государств с каждым годом выделяется все больше финансирования. Это связано с обширными перспективами развития данной сферы исследований.
Нанотехнологии в России развиваются согласно целевой Федеральной программе, которая предусматривает не только большие финансовые затраты, но и проведение большого объема конструкторских и научно-исследовательских работ. Для реализации поставленных задач происходит объединение усилий различных научно-технологических комплексов на уровне национальных и транснациональных корпораций.
Зачем ученые добавляют в графен куриный помет
После вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.
В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет, чтобы проверить, как это отразится на его качествах.
Всего в мире зарегистрировано более 50 тыс. патентных заявок с упоминанием графена. Больше половины из них принадлежит Китаю, следом идут Южная Корея, США, Япония и Тайвань.
В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.
Финансовые затруднения при реализации проектов
На сегодняшний день имеет место такая проблема, как огромное количество фирм занимающихся исследованиями в области источников питания. Новые разработки появляются как грибы после дождя, а очевидного фаворита среди всей этой братии — не наблюдается. Подобное положение дел влияет и на инвесторов, которые явно не спешат расставаться со своими капиталами, при вложении денежных средств в новые затеи.
Денег кстати, нужно довольно много: для организации небольшой производственной линии по выпуску высокотехнологичных батарей, потребуется что-то около 500 млн. долларов. Кроме того, создать перспективный источник энергии — это только половина дела, научный проект нужно ещё поставить на «коммерческие рельсы», что не является лёгким манёвром.
Создатели мобильных девайсов или производители электрокаров, будут подвергать тестам новое оборудование годами, перед тем как утвердить выгодный для себя вариант. Инвестиции за этот период не окупятся, а фирма-разработчик будет работать в убыток. Думаете, если свежая технология оказалась на рынке — всё, успех, удача, дело сделано и игра сыграна? Как бы не так — этого оказывается тоже ещё мало. Дело в том, что разработчику новинки, предстоит претерпеть сложный период адаптации и поиска потребителей. Однако таких обстоятельств, на данный момент, всё-равно, пока ни у кого не было, поэтому до покупателей дело не доходило!
К примеру, вот две фирмы, Leyden Energy и A123 Systems, создавшие новые, вполне себе многообещающие технологии, которые так и не добрались до рынка. Почему? Причина оказалась банальной: не потянули по денежным средствам! Можно вспомнить и ещё парочку подающих надежду «аккумуляторных стартапов» — Seeo и Sakti3. Их прикупили сторонние фирмы, причём суммы сделок были намного ниже тех, на которые изначально надеялись первые инвесторы.
Такие электронные гиганты как Samsung, LG и Panasonic, на самом деле больше поощряют модернизацию уже имеющихся у них технологий, чем создание АКБ с нуля. Так что, на данный момент эти производители занимаются оптимизацией литий-ионных электронакопителей разработанных ещё в 70-х годах прошлого столетия. Остаётся только надеяться, что «чудо-графену» всё-таки удастся внести серьёзные коррективы в эти обстоятельства.
История открытия
Графен представляет собой двухмерный кристалл. Его структура является гексагональной решеткой, состоящей из атомов углерода. Теоретические исследования графена начались задолго до получения его реальных образцов, так как данный материал является базой для построения трехмерного кристалла графита.
Еще в 1947 г. П. Воллес указал на некоторые свойства графена, доказав, что его структура аналогична металлам, и некоторые характеристики подобны тем, которыми обладают ультрарелятивистские частицы, нейтрино и безмассовые фотоны. Однако у нового материала есть и определенные существенные отличия, делающие его уникальным по своей природе. Но подтверждение этим выводам было получено только в 2004 г., когда Константином Новоселовым и впервые был получен углерод в свободном состоянии. Это новое вещество, которое назвали графеном, и стало крупным открытием ученых. Найти этот элемент можно в карандаше. Его графитовый стержень состоит из множества слоев графена. Каким образом карандаш оставляет след на бумаге? Дело в том, что, несмотря на прочность составляющих стержень слоев, между ними существуют весьма слабые связи. Они очень легко распадаются при соприкосновении с бумагой, оставляя след при письме.
Оксиды наноматериала
Ученые активно исследуют и такую структуру графена, которая внутри или по краям углеродной сетки имеет присоединенные кислородосодержащие функциональные группы или (и) молекулы. Это оксид самого твердого нановещества, который является первым двумерным материалом, дошедшим до стадии коммерческого производства. Из нано- и микрочастиц этой структуры ученые изготовили сантиметровые образцы.
Так, оксид графена в сочетании с диофилизированным углеродом был недавно получен китайскими учеными. Это весьма легкий материал, сантиметровый кубик которого удерживается на лепестках небольшого цветка. Но при этом новое вещество, в котором находится оксид графена, является одним из самых твердых в мире.
Биомедицинское применение
Оксид графена обладает уникальным свойством селективности. Это позволит данному веществу найти биомедицинское применение. Так, благодаря работам ученых стало возможным использование оксида графена для диагностики раковых заболеваний. Обнаружить злокачественную опухоль на ранних стадиях ее развития позволяют уникальные оптические и электрические свойства наноматериала.
Также оксид графена позволяет производить адресную доставку лекарственных и диагностических средств. На основе данного материала создаются сорбционные биодатчики, указывающие на молекулы ДНК.
Описание графена:
Графен – это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Атомы углерода
в графене соединяются между собой sp 2 -связями. Графен в буквальном смысле представляет собой материю, ткань
.
Углерод имеет множество аллотропов. Некоторые из них, например, алмаз
и графит
, известны давно, в то время как другие открыты относительно недавно (10-15 лет назад) – фуллерены
и углеродные нанотрубки
. Следует отметить, что известный многие десятилетия графит представляет собой стопку листов графена, т.е. содержит несколько графеновых плоскостей.
На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).
Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах.
Невидимый и прочный
Графен состоит из плотно соединённых атомов углерода, выстроенных в решётку наподобие пчелиных сот толщиной всего в один атом. Это делает его самым тонким материалом в мире, невидимым невооружённым глазом, но при этом очень прочным и эластичным. Впервые графен выделили в 2004 году российские учёные Андрей Гейм и Константин Новосёлов, которые работали тогда в Манчестерском университете. Шесть лет спустя опыты физиков были удостоены Нобелевской премии.
С тех пор исследователи со всех уголков планеты пытались найти всё новые способы применения и, что интересно, получения графена. Ведь одним из главных факторов, мешающих наладить масштабное производство этого чудо-материала, была дороговизна «оригинального» варианта получения графена с помощью сложного процесса разложения графита. Очень быстро графен научились добывать при помощи лазера, используя в качестве сырья обычную древесину, и даже путём взрыва углеродсодержащего материала.
Пока одни учёные соревнуются, чей метод получения графена проще и дешевле, другие находят ему самое необычное применение.
Тихая графеновая революция
«У графена очень много интересных физических свойств и явлений, например электронные свойства, которые позволяют использовать графен для конструирования сложных электронных наноустройств. Есть работы, в которых его используют для защиты наночастиц от окисления», — рассказал в беседе с RT старший научный сотрудник кафедры химической кинетики химического факультета МГУ им. М.В. Ломоносова Владимир Боченков.
Также по теме
Новые свойства графена помогут создавать топливо «из воздуха»
Исследование, проведённое физиками в Университете Манчестера, показало, что открытый в 2010 году графен может быть использован в…
Кроме того, графен поможет решить одну из главных задач современности — получить недорогие, надёжные и экологически безопасные источники энергии. Так, графеновые композиты позволяют создать более эффективные солнечные панели. Учёные из Массачусетского технологического института доказали, что при помощи графена можно сделать эластичные, дешёвые и прозрачные солнечные элементы, превращающие практически любую поверхность в источник электроэнергии. Солнечные батареи из графена, по словам учёных, могут производить энергию даже в дождь.
«В графене можно делать определённые отверстия, выбивая некоторые атомы углерода, и получать регулируемые поры, которые можно использовать в качестве мембраны в батареях и топливных ячейках. Также мембраны на основе графена могут удешевить производство тяжёлой воды. Она необходима в атомной промышленности для получения относительно экологически чистой энергии. Здесь опять же уникальные свойства графена позволяют быстрее разделять субатомные частицы, делая весь процесс очень экономичным. В результате мы получаем более зелёную и дешёвую атомную энергию», — отметил Боченков.
Крупнейшие технологические компании уже приступили к созданию литийионных аккумуляторов для смартфонов с использованием графена. Инновационная технология позволяет заряжать батарею быстрее и хранить заряд дольше.
Графен можно использовать в качестве мембраны для фильтрации атомов водорода в воздухе и получить биологически чистое топливо. К такому выводу пришли первооткрыватели графена. Андрей Гейм и Константин Новосёлов выяснили, что при высоких температурах и присутствии платины в качестве ускорителя реакции графен пропускает положительно заряженные ионы водорода (протоны) и задерживает практически всё остальное. Такая технология поможет совершить прорыв в развитии зелёной энергетики.
Также по теме
«Рассеять энергию пули»: как нанотехнологии используются в военном деле
В России и мире активно ведутся разработки в области материалов, которые позволяют создавать новые средства индивидуальной бронезащиты…
Взяли на вооружение графен и производители военной продукции. Выяснилось, что материал обладает пуленепробиваемыми свойствами. Учёные из Нью-Йоркского университета получили очень прочные и почти невесомые бронежилеты. В ходе эксперимента физики запустили стеклянную микропулю в листы графена толщиной от десяти до 100 слоёв. Графен рассеял энергию пули, летящей на скорости 3000 м/с. Однако в точке удара материал вытянулся в форме конуса, а затем треснул. Появление трещин не позволяет пока поставить графеновые бронежилеты на службу полицейским. По оценкам специалистов, чтобы защитить своих обладателей, такие бронежилеты должны состоять из миллионов слоёв графена. А для этого требуется наладить его производство в промышленных масштабах.
Проник графен и в биологию. В 2016 году китайские учёные накормили шелкопрядов тутовыми листьями, которые были сбрызнуты препаратами, содержащими графен. В итоге экспериментаторы получили прочную и хорошо проводящую электричество графеновую шёлковую нить.
Сильные и слабые стороны
Нелишним будет взглянуть на плюсы и минусы, характеризующие графеновые аккумуляторы и их перспективы развития.
Сильных сторон достаточно много. Среди них можно выделить такие:
- исходный материал доступный и распространённый;
- графен выпускают в больших объёмах;
- метод получения материала достаточно простой и легко реализуемый;
- незначительный вес, при котором 1 м² материала весит около 1 грамма;
- экологичность и безопасность для окружающей среды;
- высокая прочность;
- водонепроницаемость;
- способность быстро восстанавливать повреждённые участки;
- показатели проводимости выше любого современного полупроводника;
- высокие показатели удельной ёмкости;
- возможность потенциально проехать более 1000 км без подзарядки;
- долговечное вещество;
- независимость от циклов заряд–разряд;
- высокая скорость зарядки.
Проблема в плотности. Она не позволяет создать достаточно компактные рабочие образцы. Потому серийных вариантов небольших АКБ на основе графена до сих пор не существует. Но это, скорее, касается перспектив использования в мобильных девайсах.
Для машин крупные размеры – не проблема. Потому тут стоит говорить о неплохих перспективах на будущее.
Учитывая то, что плюсы заметно превосходят минусы, стоит ожидать дальнейшего развития таких АКБ и стремительного внедрения графенового аккумулятора в электромобили.
Как мы можем использовать графен?
Графен часто применяют в медицине. Его используют при создании сенсоров, определяющих биомаркеры. В частности, иммуноглобулин, опасные токсины, а также биомаркеры, связанные с онкологией и сердечно-сосудистыми заболеваниями. Это позволяет врачам по-новому диагностировать заболевания.
Более того, графен считается отличной заменой существующим материалам, которые были доведены до своих физических пределов. Например, кремниевые транзисторы (коммутационные устройства, используемые в качестве запоминающих устройств и логических элементов для принятия решений в компьютерах) за последние несколько десятилетий последовательно уменьшались и становились всё более мощными. Но учёные уже давно выражают опасения, что дальнейшие усовершенствования ограничены законами физики. Замена кремния графеном позволит создать ещё более мелкие и быстрые транзисторы.
Таким же образом графен мог бы революционизировать и другие области технологии, ограниченные традиционными материалами. Например, с его помощью можно создать конкурентоспособные по стоимости и более эффективные солнечные панели и более энергоэффективное оборудование для передачи энергии. Такие компании, как Samsung, Nokia и IBM уже разрабатывают графеновые заменители для сенсорных экранов, транзисторов и флэш-памяти, но разработка всё ещё находится на очень ранней стадии.
“2D ничто” и посткремниевая эра
Рост числа научных публикаций и патентов — одна из задач национального проекта “Наука”. Так вот, только по графену за последние 10 лет в ведущих научных журналах опубликовано более 220 тысяч статей и зарегистрировано свыше 50 тысяч патентов. И с каждым годом их число только растет. Ни одна другая область исследований не может конкурировать по этим показателям. Сегодня ученым известны сотни различных двумерных материалов, и лишь малая часть из них в достаточной мере изучена. Удивительно, но несмотря на то что толщина этих материалов не превышает нескольких атомов, они проявляют заметные физические и химические свойства. Используя их, вы не меняете размеры вещей, но меняете их свойства.
В мировой науке слово “графен” упоминается практически так же часто, как слово “квантовый”, а это, очевидно, более широкое понятие, чем одна из разновидностей двумерных материалов. В 2016 году графен обогнал по числу упоминаний в ведущих научных журналах такой материал как кремний. Это показательный момент: если не в промышленности, то в науке мы уже перешли в посткремниевую эру, где на первые роли вместо кремния вышли различные двумерные материалы. Более 30% всех публикаций в области нанотехнологий так или иначе связаны с ними. Ученые и инженеры не ограничились открытием и изучением новых двумерных материалов. В последние годы они активно работают над созданием и изучением гибридных структур, так называемых ван-дер-ваальсовых гетероструктур, которые сочетают в себе два и более двумерных материала. Это можно себе представить в виде игры в “Лего” в атомном масштабе, когда из разноцветных пластинок (диэлектриков, полупроводников, полуметаллов) собирается принципиально новый материал. Но и это не все: поворачивая пластинки друг относительно друга на разные углы, также можно изменить свойства суммарного материала. Например, поворачивая два слоя графена на “магический угол”, ученым удалось наблюдать сверхпроводимость, которую без поворота ранее не наблюдали.
Если раньше мы ограничивались природными материалами, то теперь научились конструировать новые. Ученые называют их программируемыми квантовыми материалами. Предполагается, что мы сможем создавать искусственные материалы с заданными свойствами, которые требуются для решения конкретной инженерной задачи. Для последних на примере двух повернутых на “магический” угол слоев графена (так называемый скрученный графен) была обнаружена сверхпроводимость. Такие структуры позволяют создавать искусственные материалы с недоступными нам ранее свойствами.
Сегодня ученые пришли к еще более экзотическим материалам. Например, если мы сделаем где-либо полость толщиной в один слой атомов, то это еще один объект для исследований — так называемое “2D ничто”, или “2D nothing”. Если в случае графена нас интересовала извлекаемая из основного материала плоскость атомов, то здесь нас интересует то, что остается после извлечения. Дело в том, что стенки получаемой полости являются гладкими, атомная структура не нарушается, и нам еще только предстоит узнать, что из себя физически представляет такой объект и как он меняется в зависимости от того, в каком материале сделана полость. Например, для молекул воды в таких полостях в графите наблюдается сверхнизкая вязкость.
Графеновый аккумулятор – что это?
Прежде чем углубиться в тему графеновых аккумуляторов, стоит быстро вспомнить, что такое графен и как он работает.
Вкратце, графен представляет собой совокупность атомов углерода, тесно связанных в гексагональную или сотовую структуру. Что делает графен таким уникальным, так это то, что данная структура имеет толщину всего в один атомный слой, что делает графеновый слой двумерным.
Эта двумерная структура обладает очень интересными свойствами, включая превосходную электро и теплопроводность, высокую гибкость, прочность и малый вес. Что нас особенно интересует, так это проводимость электричества и тепла, которая на самом деле превосходит медь — самый проводящий металлический элемент.
Суперконденсаторы обеспечивают работу аккумуляторов, которые дольше служат и заряжаются практически мгновенно
Когда дело доходит до аккумуляторов, возможности графена могут быть использованы разными способами. Идеальное использование графена в качестве батареи — это «суперконденсатор». Суперконденсаторы накапливают ток точно так же, как и обычная батарея, но могут невероятно быстро заряжаться и разряжаться.
Нерешенный проблема с графеном заключается в том, как экономически массово изготовить сверхтонкие листы для использования в батареях и других технологиях. Затраты на производство в настоящее время чрезмерно высоки, но исследования помогают сделать графеновые батареи более доступными.