Квантовый мир: как связаны стерильные нейтрино и темная материя?

В поисках стерильного нейтрино

Детектор нейтрино LSND, расположенный в Национальной лаборатории Лос-Аламоса и мини-ускоритель нейтрино MiniBooNE в Национальной ускорительной лаборатории Ферми (Fermilab) позволили исследователям прийти к удивительным выводам.

Более двадцати лет физики ищут таинственное стерильное нейтрино

В своих экспериментах физики генерируют поток мюонных нейтрино и направляют их на детектор, расположенный на расстоянии 470 метров. Детектор – гигантский резервуар, заполненный 170 метрическими тоннами чистого жидкого аргона – ждет, чтобы поймать нейтрино в момент столкновения с ядром одного из атомов аргона. Такие столкновения крайне редки, и единственными их признаками являются вторичные частицы, образующиеся в результате взаимодействия.

Как пишет Scientific American, ученые объявили о результатах, полученных с помощью детектора MicroBooNE 27 октября, заявив, что не увидели никаких признаков, свидетельствующих о наличии дополнительных частиц.

Детектор элементарных частиц MicroBooNE

Однако MicroBooNE может гораздо точнее определить направление движения частиц и энергию, которую выделяют частицы. Это означает, что физики могут решить, является ли что-то электроном или фотоном. Настоящий триумф эксперимента заключается в том, что технология работает настолько хорошо.

Тем не менее, исследователи практически уверены в том, что там, где они искали, нет лишних электронов или фотонов, что ослабляет надежды на обнаружение стерильных нейтрино. Если бы мюонные нейтрино могли быстро превращаться в стерильные нейтрино, а затем в электронные нейтрино, электроны появились бы в детекторе.

Но если нет лишних электронов или фотонов, то что это за избыточные частицы, которые были зарегистрированы LSND и MiniBooNE? Один из вариантов ответа заключается в том, что необъяснимые столкновения нейтрино на самом деле не происходили ни в одном из предыдущих экспериментов и что в случае с MiniBooNE исследователи просто пропустили некоторые помехи внутри детектора в ходе эксперимента.

Детектор находится недостаточно далеко от своего источника, чтобы возникло обычное колебание мюонного нейтрино в электронное нейтрино.

Другие соглашаются. «Очень маловероятно, что в детекторе произошла какая-то ошибка», – рассказал журналистам физик-теоретик Северо-Западного университета Андре де Гувеа. Должен быть новый источник либо электронов, либо фотонов, либо чего-то похожего на электроны или фотоны. Возможно, говорит он, происходит что-то более сложное.

Эти частицы могут распадаться на другие — например, на обычное нейтрино и нечто экзотическое, например «темный фотон» (двоюродный брат обычных фотонов, физики предполагают его существование, однако никаких доказательств их существования на сегодняшний день нет).

Причем здесь темная материя?

И все же, стерильные нейтрино остаются привлекательной перспективой для физиков. Они, вероятно, являются побочным продуктом теорий, пытающихся объяснить, почему нейтрино вообще имеют массу. Более того, эти таинственные частицы могут помочь объяснить, что такое темная материя.

Дело в том, что некоторые виды стерильных нейтрино сами могут быть кандидатами на темную материю, или же быть частью «темного сектора», в котором частица темной материи оказывается связана со стерильными нейтрино или распадается на них. И выяснение того, что происходит в этих экспериментах с нейтрино, может стать первым шагом к ответу на эти более масштабные вопросы.

Так как темная материя не вступает в электромагнитное взаимодействие с фотонами света, наблюдать ее непосредственно невозможно

Как предложил Джанет Конрад, физик из Массачусетского технологического института (MIT), и Карлос Аргуэльес-Дельгадо, физик из Гарвардского университета, стерильные нейтрино могут распадаться на набор невидимых частиц: они подтвердили бы существование темного сектора, выведенного в качестве альтернативы невозможности обнаружения «неповрежденных» стерильных нейтрино.

Напомню, что темная материя не состоит из обычных частиц, таких как электроны, протоны или электроны, поэтому считается, что она должна состоять из частицы, не распознаваемой Стандартной моделью.

Исторически стерильные нейтрино были кандидатами для объяснения состава темной материи, поэтому проверка того, что они доминируют в темном секторе с помощью невидимых частиц, которые являются их прямыми потомками, также объяснило бы, почему Вселенная находится в постоянном расширении.

Возможно, ученые вскоре обнаружит нечто такое, что навсегда изменит современную физику

Для чего нужны Пространство и Время?

Исходя из теории декогеренции, Пространство и Время возникают из квантовой реальности.

Представь себе: в квантовой реальности, вне времени и пространства, пребывает бесконечный набор возможностей. Этот набор нигде не реализован, он просто есть.

И вот, появляется информация, которая материализует, извлекает одну из альтернатив из Абсолюта. Таким образом, Возможность превращается в Событие. При этом, в квантовой реальности по-прежнему сохраняются все возможные альтернативы.

Квантовая реальность, Абсолют – это мир чистого информационного Потенциала.

Между тем, для физического проявления События необходимо какое-то место. Так возникает Пространство – как место превращения возможности в Событие под воздействием информации.

Электрон прошел через левую щель в двухщелевом эксперименте. Огромный метеорит упал на Землю. Цезарь перешел Рубикон. Твои родители встретились. Все это – События, реализованные возможности.

Поэтому, о декогеренции можно сказать и так – это превращение существующей в квантовом пространстве возможности в Событие под воздействием поступающей информации.

А информационный обмен, между тем, продолжается. И совершившееся Событие рождает и сообщает новую информацию. А эта вновь полученная информация начинает извлекать из квантовой реальности новую возможность, превращая ее в следующее Событие.

Электрон прошел через щель – и оставил след на левой части экрана за щелью. Метеорит упал – и началось всемирное похолодание. Цезарь перешел Рубикон – и в Риме началась гражданская война. Твои родители встретились – и полюбили друг друга.

Так рождается Время – как процесс необратимого и взаимосвязанного превращения возможностей в События.

Без Времени не будет ни причин, ни следствий!

  • Цель существования Пространства – создание места для превращения самых разных возможностей в События.
  • Цель существования Времени – создание цепочек причинно-следственных связей для связывания Событий между собой.

Именно поэтому время на самом деле субъективно. Главное, от чего оно зависит -это интенсивность информационного обмена. Плотность Событий. Поэтому бывает, что «и дольше века длится день». А бывает «день пустой и мимолетный»…

Для увеличения схемы нажмите на нее.

Вместе Пространство и Время образуют единый континуум – Пространство Взаимосвязанных Событий.

В этом Пространстве Взаимосвязанных Событий возникает своя собственная, неповторимая и уникальная последовательность причинно-следственных связей. Тот самый невообразимо сложный и прекрасный Узор Мироздания. И ты вплетаешь в него свою нить. Ты постоянно создаешь информационное воздействие на Абсолютную реальность.

Теория декогеренции дает ответ на вопрос — как информация рождает материальный мир и как формируется Пространство-Время?

Однако, остается даже более важный вопрос – зачем? Для чего нужно Пространство Взаимосвязанных Событий? Каков замысел Узора Мироздания? И смысл твоего существования?

О смысле создания и существования Вселенной читай здесь.

То, о чем рассказано в этой статье, на первый взгляд может показаться очень далеким от повседневной практики. Однако, этот рассказ имеет прямое отношение к твоей жизни и к созданию твоей реальности.

Если ты глубоко прочувствуешь, что информация формирует реальность, если это станет частью твоей Мудрости — твоя жизнь необратимо изменится и станет гораздо более осознанной!

Классификация фазовых переходов

Классификация Эренфеста

Пауль Эренфест был первым, кто попытался классифицировать фазовые переходы на основе степени неаналитичности. Хотя эта классификация полезна, она носит лишь эмпирический характер и не отражает реальности механизмов перехода.

Эта классификация основана на исследовании непрерывности производных n e свободной энергии:

  • в первых переходах порядка являются те , для которых первой производной по отношению к одной из термодинамических переменных свободной энергии является прерывистой (наличие «скачки» в этой производной). Например, переходы твердое тело / жидкость / газ относятся к первому порядку: производная свободной энергии по давлению представляет собой объем, который изменяется скачкообразно во время переходов;
  • эти переходы второго порядка являются те , для которых первой производной по отношению к одной из термодинамических переменных свободной энергии является непрерывной , но не второй производной , который представляет собой разрыв. Парамагнитного / ферромагнитного перехода из железа (в отсутствие магнитного поля) является типичным примером: первая производная свободной энергии по отношению к приложенное магнитное поле намагниченность, вторая производная магнитной восприимчивости , и это изменение дискретно на так называемый « Кюри  » температура  (или точка Кюри).

Современная классификация фазовых переходов

От классификации Эренфеста отказались, поскольку она не предусматривала возможность дивергенции — и не только прерывности — производной свободной энергии. Однако многие модели в пределах термодинамики допускают такое расхождение. Так, например, ферромагнитный переход характеризуется дивергенцией по теплоемкости (вторая производная от свободной энергии).

Используемая в настоящее время классификация также различает переходы первого и второго рода, но определение другое.

Переходы первого рода связаны с энтальпией фазового перехода (или изменением энтальпии состояния , иногда называемым скрытой теплотой ). Во время этих переходов система поглощает или излучает фиксированное (и обычно большое) количество энергии. Поскольку энергия не может быть мгновенно передана между системой и ее окружением, переходы первого рода происходят в протяженных фазах, в которых не все части претерпевают переход одновременно: эти системы неоднородны. Вот что мы видим при кипячении кастрюли с водой  : вода не превращается мгновенно в газ, а образует турбулентную смесь воды и пузырьков водяного пара . Гетерогенные расширенные системы трудно изучать, потому что их динамика жестока и трудно поддается контролю. Так обстоит дело со многими системами, в частности с переходами твердое тело / жидкость / газ.

Эти переходы второго порядка переходы называются «непрерывной фазой»; нет связанной энтальпии. Так обстоит дело, например, с ферромагнитным переходом, сверхтекучим переходом и конденсацией Бозе-Эйнштейна.

Однако вопрос о самом существовании переходов второго рода — это очень давняя дискуссия, и теперь кажется принятым, что не существует переходов второго рода stricto sensu .

Есть также фазовые переходы бесконечного порядка. Они непрерывны, но не нарушают симметрии (см. Ниже). Самый известный пример — переход Березинского-Костерлица-Таулеса в двумерной XY-модели . Эта модель позволяет описывать многочисленные квантовые фазовые переходы в двумерном электронном газе .

В направлении очень ранней Вселенной…

По мерет того, как мы движемся во времени назад к моменту создания, вплоть до одной сотой секунды,
Вселенная становится всё горячее и плотнее пока, в конце-концов, материя фактичски изменит свое фазовое
состояние, то-есть, изменит свою форму и свойства. Повседневной знакомой аналогией такого процессая является
простая вода.
При повышении температуры мы видим последовательность фазовых переводов воды в которых её
свойства драматически меняются: твердая фаза — лед — плавится с образованием жидкой фазы — воды — а затем
в конечном счете кипит, образуя газообразную фазу — пар. Вы можете отметить, что пар является `более
симметричным’, чем вода, которая, в свою очередь, более симметрична, чем лед (Вы понимаете
почему? Объяснения Вы найдете …
) Таким же образом обстоит дело и с
материей нашей Вселенной; она начинает существование унифицированной или `симметричной’ фазе (как мы
объясним ниже), а затем проходит через последовательность фазовых переходов пока, при более низких
температурах, мы наконец получим частицы материи с которыми имеют дело совеменные физики, то есть, электроны,
протоны, нейтроны, фотоны и др.

Как мы убедимся на нескольких следующих страницах, фазовые переходы могли оказывать фундаментальное
влияние на эволлюцию нашей Вселенной и её содержимое. Более того, некоторые непосредственые `следы’ этих
переходов окружают нас сегодня! Две ключевые концепции «объединение» и «фазовый переход» являются жизненно
необходимыми для нашего сегодняшнего понимания физики частиц.

О квантовой природе человека

Человек – это не только то, что мы видим, а несравненно большее – то, что слышим, чувствуем, ощущаем. Все тело человека пронизано квантовой энергией, составляющей интеллектуальную сеть, коллективный разум не только мозга, но и остальных пятидесяти триллионов клеток организма, мгновенно реагирующая на малейшие проявления мыслей и эмоций, дающая возможность постоянным изменениям тонких вибраций.

Физика говорит, что основная ткань природы находится на квантовом уровне, гораздо глубже уровня атомов и молекул, это фундамент строительства. Квант – основная единица материи или энергии, в десятки миллионов раз меньше самого маленького атома. На этом уровне материя и энергия становятся равнозначными. Все кванты состоят из невидимых колебаний флуктуаций света – призраков энергии, – готовых принять физическую форму.

Человеческое тело – это вначале интенсивные, но невидимые колебания, называемые квантовыми флуктуациями, а уж потом объединенные в импульсы энергии и частицы материи. Квантовое тело является фундаментальной основой всего, из чего мы состоим: мыслей, эмоций, протеинов, клеток, органов, – в общем, всех видимых и невидимых компонентов.

На квантовом уровне тело посылает всевозможные виды невидимых сигналов, ожидая, что мы их примем. Все процессы и органы в нашем теле имеют свой квантовый эквивалент. Наше сознание способно обнаружить тонкие вибрации благодаря невероятной чувствительности своей нервной системы, которая принимает, передает и затем усиливает их таким образом, что наши органы чувств начинают воспринимать эти сигналы. И мы относим все это к интуиции.

Мы все склонны рассматривать свои тела как застывшие скульптуры – жесткие, неподвижные материальные объекты – в это время как на самом деле они более похожи на реки, постоянно меняющие рисунок нашего интеллекта. Каждый год 98 % атомов вашего организма заменяются новыми. Этот поток изменений контролируется на квантовом уровне системой тело – сознание.

На квантовом уровне ни одна часть тела не живет в отрыве от остальных. Когда человек счастлив, химические вещества, выделяемые мозгом, «путешествуют» по всему телу, сообщая каждой клеточке об ощущении счастья. Дурное настроение также передается химическим путем каждой клеточке, ослабляя деятельность иммунной системы. Все что мы думаем и делаем, возникает сначала в глубинах квантового тела, а затем всплывает на поверхность жизни.

Человек может научить свое сознание управлять собой на этом тонком уровне; по существу, то, что он называет мыслями и эмоциями, является лишь выражением этих квантовых флуктуаций. Мысль человеческая – это своего рода акт квантовой телепортации, посылка квантового пакета от одного объекта другому объекту, находящемуся на произвольном расстоянии. Такая передача информации возможна за счет эффекта «запутывания», где два объекта «знают» о существовании друг друга. Мысль, как только получает ориентир, отправляется в путь к объекту исследования и может определить его любой параметр и состояние, и уже в голове на экране флюидного зрения мгновенно отображает показатели работы исследуемого, а мозг оценивает и распознает, вынося свои суждения.

Из чего состоит все вокруг?

С точки зрения физики мы состоим из кварков и лептонов. Как объясняет в своем видео для Пост-Науки доктор физико-математических наук Данилов Михаил Владимирович, нейтроны состоят из u-кварков и d-кварков и составляют атомные ядра. Из атомных ядер и электронов образуются атомы, которые затем объединяются в молекулы, образуя абсолютно все, что мы видим вокруг себя.

Согласитесь, довольно простая картина. Электроны в атомах удерживаются за счет электромагнитного взаимодействия, а его переносчик – фотоны. Кварки внутри протона и нейтрона удерживаются за счет сильного взаимодействия, переносчиками которого появляются глюоны.

Бозон Хиггса многое изменил в мире элементарных частиц

Но несмотря на столь элегантную и простую на первый взгляд картину, природа не так проста. И доказательством тому служит существование еще одного набора кварков и лептонов, которые физики называют поколениями. Интересно, что эти частицы тяжелее обыкновенных кварков и лептонов, но вокруг нас их нет. Они возникают лишь в редких случаях.

Итак, что мы в итоге знаем о Вселенной?

ЭПР-парадокс

В период активного развития квантовой теории, в 1935 году, в знаменитой работе Альберта Эйнштейна, Бориса Подольского и Натана Розена «Может ли квантово-механическое описание реальности быть полным?» был сформулирован так называемый ЭПР-парадокс (парадокс Эйнштейна-Подольского-Розена).

В основе парадоксе лежит вопрос о том, может ли Вселенная быть разложена на отдельно существующие «элементы реальности» так, что каждый из этих элементов имеет своё математическое описание.

Авторы показали, что из квантовой теории следует: если есть две частицы A и B с общим прошлым (разлетевшиеся после столкновения или образовавшиеся при распаде некоторой частицы), то состояние частицы B зависит от состояния частицы A и эта зависимость должна проявляться мгновенно и на любом расстоянии. Такие частицы называют ЭПР-парой и говорят, что они находятся в «запутанном» состоянии.

В 1980 году Алан Аспект экспериментально показал, что в квантовом мире ЭПР-парадокс действительно имеет место. Специальные измерения состояния ЭПР-частиц A и B показали, что ЭПР-пара не просто связана общим прошлым, но частица B каким-то образом мгновенно «узнает» о том, как была измерена частица A (какую ее характеристику измеряли) и какой получился результат.

В 1993 году Чарльз Беннет и его коллеги придумали, как можно использовать замечательные свойства ЭПР-пар: они изобрели способ переноса квантового состояния объекта на другой квантовый объект с помощью ЭПР-пары и назвали этот способ квантовой телепортацией. А в 1997 году группа экспериментаторов под руководством Антона Цайлингера впервые осуществила квантовую телепортацию состояния фотона.

Общие типы фазовых переходов

Наиболее распространенные фазовые переходы (или изменения физического состояния ) включают три состояния вещества: твердое состояние , жидкое состояние и газовое состояние  :

  • от твердого до жидкого: плавление  ;
  • от твердого тела к газу: сублимация  ;
  • от жидкого к твердому: затвердевание  ;
  • из жидкости в газ: испарение ( кипение или испарение );
  • от газообразного к твердому: конденсация , осаждение или обратная сублимация твердого вещества ;
  • от газа к жидкости: сжижение или конденсация жидкости  ;

В термодинамике каждому переходу присваивается определенный термин . Например :

  • от газообразного к твердому: конденсация (исключительно);
  • от газа к жидкости: сжижение (исключительно).

Существуют также фазовые переходы от твердого тела к твердому (замена одного полиморфа другим), например, превращение алмаза в графит ( ) или α- кварца в β-кварц ( ).

Загадочные нейтрино

Но вернемся к нейтрино. В 1990-х годах во время экспериментов по изучению этих таинственных частиц произошло нечто странное: в детекторе появилось слишком много частиц. В 2002 году ученые начали еще один эксперимент, чтобы выяснить, что произошло. Это испытание также показало удивительные результаты — но по-другому.

Эти избыточные частицы в ранних экспериментах взволновали ученых. Дело в том, что они выглядели как возможные признаки существования так называемых «стерильных нейтрино», мешающих нормальным нейтринным ароматам (как их поэтично называют физики): стерильные нейтрино взаимодействовали бы с другими частицами только с помощью гравитации, тогда как известные три аромата нейтрино – с помощью слабого взаимодействия.

Физики поэтично называют разные типа кварков ароматами

И все же они могут оказывать влияние на другие нейтрино из-за странного свойства, которым обладают все эти частицы: способности «колебаться» или менять аромат. Частица, например, электронное нейтрино, может превратиться в тау или мюонное нейтрино, и наоборот. Обычно это преобразование происходит, когда нейтрино преодолевают определенное расстояние, но, похоже, оно происходит быстрее в других экспериментах.

Однако в 2013 году существование стерильных нейтрино было поставлено под сомнение, поскольку исследования, проведенные в Институте Макса Планка в Германии по ранней вселенной, не обнаружили их следов, как, например, объясняет в этой связи журнал Quanta.

С тех пор появились предположения о возможности существования не одного стерильного, а множества дополнительных нейтрино, которые могли бы взаимодействовать друг с другом посредством своих собственных тайных сил в месте во Вселенной, которое мы до сих пор не знаем.

«Телепортация» мысли в окружающее пространство

В своей книге «Квантовая магия» С.И. Доронин проводит интересную аналогию между исследованиями в области квантовой телепортации и особенностями человеческой психики, имеющей квантовую природу. В частности, он отмечает:

«… при построении квантового коммутатора предполагается наличие определенного числа (N) пользователей и центрального коммутатора, с которым все они соединены квантовым каналом связи. Принципиальную схему работы такого коммутатора можно объяснить следующим образом. Пусть у каждого пользователя есть (в простейшем случае) одна максимально запутанная пара. Они отдают одну частицу из своей пары на центральный коммутатор, в котором происходит их объединение. В этом случае все оставшиеся у пользователей частицы оказываются квантово-запутанными. Все N частиц, которые по-прежнему у них остаются, становятся квантово-коррелированными, то есть все пользователи объединены квантовыми корреляциями, они как бы «включены» в единую квантовую сеть и могут «телепатически» общаться друг с другом.

… квантовый коммутатор, описанный выше, можно считать простейшей физической моделью, иллюстрирующий работу эгрегоров (эзотерический термин) и демонов (в религиозной традиции). Когда мы отдаем «в общее пользование» свои мысли и эмоции, то тем самым оказываемся «включенными» в различные «квантовые коммутаторы» в соответствии с направленностью своих мыслей и чувств. Чтобы эгрегор (демон) «заработал» в качестве квантового коммутатора и начал свое существование как объективный элемент реальности («энергетический сгусток» в квантовом ореоле Земли), достаточно того, чтобы «психические выделения» у нескольких человек были одинаковы (или близки). В целом, чтобы между различными системами было взаимодействие, они должны иметь одинаковые состояния. Тогда переходы между этими состояниями и, как следствие, генерация и поглощение энергии будут приводить к взаимодействию и корреляциям. Одинаковые энергии будут способны к взаимодействию. Причем чем меньше разность энергии между уровнями, чем слабее классические взаимодействия, тем больше в этом случае относительная величина квантовых корреляций. Например, мы все имеем примерно одинаковые наборы базисных эмоциональных и ментальных состояний, поэтому однонаправленные мысли и эмоции (то есть переход нескольких людей в определенное ментальное или эмоциональное состояние) автоматически ведут к генерации близких энергетических потоков и к взаимодействию на этих уровнях. Другими словами – к образованию новых или подпитке уже существующих «квантовых коммутаторов» – эгрегоров (демонов). Эмоции при этом содержат больше энергии, но меньше квантовой информации, мысли – наоборот, меньше энергии, но больше квантовой информации (мера запутанности выше).

Индивидуальное сознание должно уметь целенаправленно оперировать в том пространстве состояний, до которого оно добралось (изменять вектор состояния на достигнутом уровне). Умение изменять весь вектор состояния на каком-то уровне реальности дает возможность менять ее на всех более низких (плотных) уровнях. Практически это означает, что сознание умеет нужным образом перераспределять энергию, управляя энергетическими потоками. Замечу, что изменение состояния – это и есть изменение энергии, поскольку в квантовой механике она является функцией состояния».

По материалам Интернет-изданий

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: