Почему вода в невесомости принимает форму шара?

Контрмеры

Что можно сделать, чтобы облегчить пребывание в условиях микрогравитации? Что касается неодушевленных вещей, каждый объект на станции или корабле должен храниться в шкафу, быть привязан или крепиться к стене липучкой.

К примеру, если вы едите в условиях невесомости, вы должны прочно стоять на ногах в аппарате, а ваш поднос с едой должен быть прикреплен к вам ремешком. Как вы знаете, еда обычно хранится в тюбиках и представляет собой полужидкую массу, какой-нибудь рис или паштет, который можно легко выдавить из тюбика, и он не уплывет. Портативное оборудование, вроде ноутбука, также привязывается  к вам или к стене корабля.

Давайте вспомним, что на борту МКС наше тело подвергается в основном трем изменениям: потеря жидкости, потеря мышечной ткани и потеря костной массы. Что же нужно делать, чтобы минимизировать эти потери?

Потеря жидкости

Одна из контрмер при потере жидкости — это устройство, которое называется «отрицательное давление нижнего тела» (ОДНТ), которое работает как пылесос пониже вашей талии, удерживая жидкость в ногах. Это устройство можно прикрепить к тренажеру, например, к беговой дорожке. Раз в день можно упражняться с ОДНТ по 30 минут, поддерживая сердечно-сосудистую систему в близком к земному состоянии.

Кроме того, до возвращения на Землю, можно выпить большое количество воды или раствор электролита, чтобы помочь восстановить потерянную жидкость в теле. Это предупредит обморок после выхода из космического корабля.

Уменьшение мышц и костей

NASA и Роскосмос выяснили, что лучший способ свести к минимуму потери мышечной и костной массы в космосе — это постоянные тренировки. Они тренируют мышцы, предотвращают их деградацию и создают нагрузку на кости, имитируя вес. Каждый день по два часа на разных тренажерах в особых ремешках — и вы сможете минимизировать потери мышечной и костной масс.

Тем не менее, ученые признают, что нужно больше исследований для выявления качественных контрмер. Причем как на борту МКС, так и на Земле, как с помощью людей, так и животных. Результаты исследований могут проложить дорогу к длительным поездкам, например, на Марс.

Какова микрогравитация на вкус?

Когда вы впервые окажетесь в состоянии невесомости, вы почувствуете следующее:

— тошнота;

— дезориентация;

— головная боль;

— потеря аппетита;

— запор;

— еще кое-что…

Чем дольше вы будете оставаться в условиях микрогравитации, тем слабее будут ваши мышцы и кости. Эти ощущения будут вызваны различными изменениями в системах вашего организма. Давайте подробно рассмотрим, как тело реагирует на невесомость.

Космическая болезнь

Тошнота и дезориентация, которая на вкус как сосущее чувство в желудке, когда автомобиль «летит» вниз по трассе или вас подхватывает на карусели. Только на борту корабля это чувство будет длиться несколько дней. Это чувство космической болезни, слабость моторики, когда ваш мозг получает противоречивую информацию от вестибулярных органов, расположенных в вашем внутреннем ухе. Ваши глаза видят, куда двигаться вверх и вниз в корабле, но ваша вестибулярная система полагается на силу тяжести, определяя направления, что не работает в невесомости. Поэтому ваши глаза могут говорить мозгу, что вы движетесь сверху вниз, но мозг этого не поймет. Это вызывает дезориентацию и тошноту, что может привести к потере аппетита и рвоте. К счастью, спустя несколько дней мозг адаптируется и начнет реагировать исключительно на визуальные сигналы. Таблетки тоже помогут.

Одутловатое лицо и куриные лапки

В условиях микрогравитации ваше лицо будет одутловатым, а пазухи — перегруженными, что вызовет головную боль и нарушение моторики. На Земле это можно почувствовать, если стоять вверх ногами — кровь приливает к голове.

На Земле гравитация притягивает вашу кровь, в результате чего значительные ее объемы скапливаются в венах ног. Как только вы окажетесь в условиях микрогравитации, кровь сдвинется из ваших ног в грудь и голову. Лицо опухнет, а ноги, наоборот, уменьшатся в размерах.

Когда кровь переходит в грудь, сердце увеличивается в размерах и качает больше крови с каждым ударом. Почки отвечают на этот увеличенный кровоток производством большего количества мочи, будто вы выпили большой стакан воды. Кроме того, увеличение кровотока снижает уровень секреции гипофизом антидиуретического гормона (АДГ), что уменьшает жажду. Вы не будете хотеть пить столько же воды, сколько на Земле. В совокупности эти два фактора помогут вашей груди и голове избавиться от лишней жидкости за несколько дней, а поток жидкости вашего тела нормализуется (для космических условий). По возвращении на Землю, вы будете больше пить и чувствовать усталость, но это пройдет.

Космическая анемия

По мере того, как ваши почки выводят лишнюю жидкость, они также уменьшают секрецию эритропоэтина — гормона, стимулирующего производство красных кровяных тел клетками костного мозга. Снижение производства красных кровяных клеток сопровождается уменьшением объема плазмы, поэтому гематокрит (процент объема крови, занимаемого красными кровяными телами) такой же, как на Земле. По возвращении на Землю, ваш уровень эритропоэтина будет расти, так же как и количество красных кровяных тел.

Слабые мышцы

Когда вы находитесь в условиях микрогравитации, ваше тело принимает позу «зародыша»: вы немного сгибаетесь, ваши руки и ноги также принимают полусогнутое состояние. В таком положении вы не используете многие мышцы, особенно те, которые помогают вам поддерживать осанку (антигравитационные мышцы). По мере пребывания на борту МКС, ваши мышцы меняются. Их масса уменьшается, что приводит к «куриным лапкам». Ваше тело больше не нуждается в мышцах, которые медленно сокращаются, вроде тех, что используются в положении стоя. Нужны быстро сокращающиеся волокна, чтобы быстрее передвигаться по станции. Чем больше вы остаетесь на МКС, тем меньше у вас будет мышечной массы. Потеря мышечной массы ослабляет вас, и это, между прочим, является серьезной проблемой для длительных полетов, особенно после возвращения на Землю.

Остеопсатироз

На Земле ваши кости поддерживают вес вашего тела. Размер и масса костей тщательно сбалансированы. В условиях микрогравитации вашим костям больше не нужно поддерживать ваше тело, поэтому все ваши кости, особенно несущие, в районе бедер, ляжек и нижней части спины, используются меньше, чем на Земле. Размер и масса костей в невесомости уменьшаются примерно на 1% в месяц. В результате по возвращении на Землю они просто могут разрушиться. Неизвестно, каков процент восстанавливаемых костей после возвращения на Землю, но он точно не равен 100. Именно эта проблема вносит ограничения на время пребывания в космосе.

В дополнение к слабым костям, концентрация кальция в крови приводит к болезни почек, которым нужно этот избыточный кальций выводить. Могут образоваться камни в почках.

Как имитировать микрогравитацию на Земле?

Есть несколько человеческих и животных моделей для моделирования и изучения микрогравитации на Земле.

Наклон головы

Человек ложится на кровать, наклоняя голову вниз примерно на 5 градусов от горизонтальной линии. Наклон воспроизводит смещение жидкостей в организме, возникающее в условиях гравитации. Кроме того, не используются несущие кости и мышцы, тем самым вызывая атрофию.

Погружение в бассейн

Помещение предмета в теплый бассейн с водой на длительный период времени. Плавучесть воды перераспределяет жидкости в организме и облегчает несущие кости и мышцы, создавая условиях микрогравитации.

Подвешенные за хвост крысы

Крысы подвешиваются за хвосты в клетках на длительные периоды времени. Такое положение провоцирует смещение жидкостей и бездействие задних конечностей, что приводит к ухудшению мышц и костей.

Искусственная микрогравитация

Полет на самолете, который летит по параболической траектории вверх и вниз, создавая 30-секундные периоды микрогравитации при каждом пике. NASA использует эту технику при подготовке космонавтов, а также дает возможность испытать это ощущение всем желающим.

Почему капля круглая

Почему капля круглая?

Если внимательно присмотреться, то увидим, что форма капли вовсе не идеально круглая. Например, если смотреть снизу на капли дождя, то они кажутся почти плоскими. Идеальный шар возможен лишь в условиях невесомости. А поскольку мы находимся на Земле, капля (как и все тела на нашей планете) подвергается воздействию силы притяжения. Это делает ее слегка сплюснутой. Поэтому по форме капля скорее не шар, а эллипсоид, хотя и с очень малым межфокальным расстоянием.

Какая еще сила, кроме силы притяжения, действует на каплю? Сила поверхностного натяжения. Чтобы объяснить, как она действует, обратимся к курсу молекулярной физики. Поверхность капли можно рассматривать как пленку, состоящую из молекул, причем молекулы ее внешних слоев находящихся не в равных условиях с молекулами внутренних. Молекулы внешнего слоя пленки обладают большей свободной энергией. Стремясь сбросить избыток энергии и пытаясь проникнуть во внутренние слои капли, они создают давление. Вектор силы давления всегда направлен к центру капли. А та сила, с которой молекулы внешних слоев капли давят на молекулы внутренних слоев, называется силой поверхностного натяжения.

Таким образом, чем меньше капли, тем они более круглые — их собирает в шар сила поверхностного натяжения. А вот капли побольше имеют вытянутую форму, потому что они слишком тяжелые и этой силы уже недостаточно для того, чтобы удержать их в форме шара.

Но вопрос остается открытым: почему же все-таки шаровидная форма? Вышеизложенная теория не вполне это объясняет. Дело в том, что на шаровой поверхности все молекулы, находящиеся на ней, находятся в равном энергетическом состоянии. Другими словами, шаровая поверхность наиболее энергетически стабильна, поскольку системе именно такое положение наиболее выгодно. Вообще, шар — самая компактная форма в природе.

Если каплю растянуть, то молекулы, находящиеся на растянутых областях, приобретают более высокую избыточную энергию. Стремясь сбросить излишек энергии, молекулы снова возвращают каплю в исходное состояние, что в итоге приводит систему в равновесие.

Как следует из вышесказанного, поверхностное натяжение как бы держит воду в упругой «кожице» — оболочке. Эта оболочка заставляет висеть каплю на конце водопроводного крана. Если же капля становится слишком большой, оболочка не выдерживает, рвется, и капля падает.

Именно благодаря силе поверхностного натяжения крошечное насекомое водомерка может ходить по поверхности воды, не погружаясь в нее. А ящерица василиск прямо по поверхности воды может спокойно перебежать речку или маленькое озерцо.

Можно ли сделать каплю воды плоской? Да, и очень просто. Надо аккуратно прикоснуться к ней кончиком намыленной соломинки. Капля становится плоской потому, что мыло ослабляет поверхностное натяжение воды — и его силы уже не хватает на то, чтобы удерживать капельку в форме шара.

Как получаются мыльные пузыри? Когда мы добавляем в воду мыло, сила поверхностного натяжения уменьшается, а поверхность воды как бы растягивается и становится более эластичной — настолько эластичной, что в нее можно вдуть воздух и при этом она растянется в пузырь. Это немного похоже на то, как если бы мы набрали воду в воздушный шарик.

Таким образом, капля воды не круглая, а эллипсоидная. Оболочки различных жидкостей имеют разную степень прочности. Например, спирт имеет меньшее поверхностное натяжение, чем вода, поэтому образует более мелкие капли. А ртуть, наоборот, имеет поверхностное натяжение в 6 раз больше, чем у воды, поэтому когда разбивается термометр, она распадается на множество мелких шариков.

http://www.microarticles.ru/article/kaplja-formy-shara.htmlhttp://class-fizika.ru/7_kap.htmlhttp://glazastik.com/%D0%BF%D0%BE%D1%87%D0%B5%D0%BC%D1%83-%D0%BA%D0%B0%D0%BF%D0%BB%D1%8F-%D0%BA%D1%80%D1%83%D0%B3%D0%BB%D0%B0%D1%8F/

Какова форма капли?

Конечно, большинство не задумываясь ответят – каплевидная, то есть, округлая внизу и вытянутая сверху. А ведь это серьезное заблуждение! На самом деле все зависит от размера капли и, соответственно, её массы.

К примеру, если брать небольшую каплю воды, около 2 миллиметров или меньше, то её размер в полете будет практически идеальной сферой. Ведь здесь действует притяжение молекул, которое направлено в центр капли. Однако форма остается такой лишь до тех пор, пока капля достаточно мала, чтобы скорость падения была небольшой и, соответственно, сопротивление воздуха сохранялось минимальным.

А вот если её диаметр увеличивается больше 2 миллиметров, то все изменяется. Силы притяжения молекул уже недостаточно, чтобы стягивать их к центру, а скорость падения и сопротивление воздуха увеличиваются. Из-за этого в нижней части создается область повышенного давления, в то время как над каплей формируется область низкого давления. Поэтому больше всего в этот момент капля похожа на купол парашюта – слегка изогнутая в центре и округлая сверху. Причем чем больше масса, тем сильнее изогнута капля в центре.

Поверхностное натяжение воды

Ещё интереснее обстоит дело, если капля увеличивается в полете – к примеру, из-за присоединения других, более мелких. При достижении размера в 7 миллиметров и больше, форма оказывается настолько изогнутой, что капля просто разрывается на две части – молекулярного притяжения уже недостаточно, чтобы удержать её целой. Поэтому обычно даже при самом сильном ливне нельзя увидеть или зафиксировать капли дождя больше 6-7 миллиметров в диаметре. Конечно, даже это бывает довольно редко. Чаще всего причиной столь крупных капель является не прошедший град. В жарком воздухе градины быстро тают и падают на землю уже не в виде льдинок, а как крупные капли воды.

Другой разговор, если речь идет о каплях, падающих не с неба, а, например, капающих из крана. Вот здесь вполне может идти разговор о той самой форме, какая привычна всем с детства «слезинка» – внизу практически идеальный шар, а вот сверху резко утончающийся хвостик. Но такой форма остается считанные мгновения – под своим весом вода оттягивается вниз, «хвостик» удерживающий её, просто рвется, и она падает вниз, в полете уже принимая форму сферы – однако все происходит настолько быстро, что человеческий глаз не успевает этого заметить.

Сила поверхностного натяжения жидкости

На Земле жидкость обычно течёт вниз.  В этом нет ничего удивительного. Все к этому привыкли.

А теперь представьте себе, что обычная вода летает, как мыльные пузыри, по комнате. Необычно? Но то что необычно на Земле, становится обычным явлением на её орбите. Происходит это из-за того, что в космосе в поведении жидкостей доминирует не гравитация планеты, а сила поверхностного натяжения. Образно говоря, жидкость, “предоставленная самой себе” в космосе, сразу же принимает форму с минимальной поверхностью, то есть форму шара.

Вода в невесомости ведет себя непривычно с земной точки зрения и собирается в аккуратные шарики

«Эврика!» Открытие закона Архимеда

Однажды царь Сиракуз Гиерон II обратился к Архимеду с просьбой установить, действительно ли его корона выполнена из чистого золота, как утверждал ювелир. Правитель подозревал, что мастер прикарманил часть драгоценного металла и частично заменил его серебром.

В те времена не существовало способов определить химический состав металлического сплава. Задача поставила учёного в тупик. Размышляя над ней, он отправился в баню и лёг в ванну, до краёв наполненную водой. Когда часть воды вылилась наружу, на Архимеда снизошло озарение. Такое, что учёный голышом выскочил на улицу и закричал «Эврика!», что по-древнегречески означает «Нашёл!».

Он предположил, что вес вытесненной воды был равен весу его тела, и оказался прав. Явившись к царю, он попросил принести золотой слиток, равный по весу короне, и опустить оба предмета в наполненные до краёв резервуары с водой. Корона вытеснила больше воды, чем слиток. При одной и той же массе объём короны оказался больше, чем объём слитка, а значит, она обладала меньшей плотностью, чем золото. Выходит, царь правильно подозревал своего ювелира.

Так был открыт принцип, который теперь мы называем законом Архимеда:

На тело, погружённое в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объёме погружённой части тела.

Эта выталкивающая сила и называется силой Архимеда.

<<Форма демодоступа>>

Образование капли

Мы привыкли к мысли о том, что капля имеет форму шара. На самом деле она почти никогда не является шаром, хотя эта форма обеспечивает наименьший объем.

Капля, покоящаяся на горизонтальной поверхности сплющена. Сложную форму имеет падающая в воздухе капля. И только капля, находящаяся в состоянии невесомости принимает сферическую форму.

В Большой Советской энциклопедии приведены мгновенные фотографии падающих капель дождя. В частности, капля диаметром 6 мм имеет форму, близкую к форме шляпки гриба; капли меньшего диаметра имеют форму, близкую к шару.

Образование капли может быть описано тремя характерными состояниями. Состояние А соответствует началу образования капли: поверхность жидкости у конца трубки горизонтальна, радиус её кривизны очень велик, силы поверхностного натяжения направлены перпендикулярно стенке трубки и не препятствуют вытеканию жидкости. Через короткое время капля переходит в состояние Б, которое характеризуется наибольшей лапласовской силой, которая замедляет скорость образования капли, а следовательно, и скорость вытекания. В этом состоянии радиус кривизны поверхности r. Затем объём капли увеличивается, она переходит в состояние В, которое характеризует основной этап формирования капли: лапласовская сила велика, но меньше, чем в состоянии Б, и в дальнейшем ещё убывает с увеличением радиуса капли; время накопления необходимой для отрыва массы велико по сравнению со временем перехода из состояния А в состояние Б, скорость вытекания ещё уменьшается.

Вода и капля в невесомости

Но, стоит отметить, что здесь и выше речь идет исключительно о нормальных условиях. А какой может быть размер капли в невесомости? Оказывается – практически любой! Ведь здесь нет никакого давления, ничто не пытается расплющить каплю или разорвать на части. Зато поверхностное натяжение никуда не денется – оно по-прежнему будет удерживать форму воды. Так что, если вылить в невесомости литр воды, не позволяя ему прикоснуться к какой-либо поверхности, он замрет в воздухе, сохраняя форму сферы. Но стоит только задеть её пальцем, как капля распределится по всей ладони, руке или даже телу, пытаясь минимизировать площадь поверхности.

Знакомьтесь: микрогравитация

Представьте себе, что вы одеты в скафандр и лежите на спине в летной кабине космического аппарата. Вы лежите на спине в течение нескольких часов, пока пилоты и центр управления полетами готовятся к запуску. Обычно, когда вы стоите прямо, сила тяжести тянет кровь вниз, поэтому целые бассейны ее собираются у вас в ногах. Однако, поскольку вы лежите на спине, кровь по-разному распределяется в вашем теле, в том числе накапливаясь и в голове, поскольку ваши ноги подняты. В голове немного тяжеловато, словно вы только что проснулись.

Ракетные двигатели зажигаются и вы чувствуете ускорение. Вас вдавливает в кресло, поскольку аппарат взлетает. Сила тяжести вместе с увеличением скорости корабля увеличивается в три раза (на некоторых американских горках можно испытать такой уровень ускорения). Ваша грудь сжимается, дышать становится немного трудно. Спустя восемь с половиной минут вы оказываетесь в космосе и начинаете испытывать совершенно другое ощущение: невесомость.

Правильный термин для невесомости — микрогравитация. Вы не невесомы, поскольку земная гравитация удерживает вас и летательный аппарат на орбите. Вы находитесь в состоянии свободного падения, словно только что прыгнули с самолета, за исключением того, что падаете горизонтально и никогда не упадете. Допустим, вы стоите на весах, и они показывают ваш вес, поскольку гравитация тянет вниз и вас, и весы. Поскольку весы находятся на земле, они отталкиваются вверх с равнозначной силой — и эта сила и есть ваш вес. Но если вы прыгнете со скалы, стоя на весах, и вы, и весы будете притягиваться гравитацией. Вы не будете давить на весы, и они не будут давить на вас. Ваш вес будет нулевым. Таков закон Ньютона.

Поскольку космический аппарат и все объекты в нем падают с одной скоростью — все, что не закреплено, плавает. Если у вас длинные волосы — они будут плавать вокруг лица. Если вы выльете воду из стакана — она соберется в большую сферическую каплю, которую можно будет разбить на меньшие капли. Галушки и конфеты сами будут заплывать вам в рот, если вы подтолкнете их по нужной траектории. Сидя в кресле, вы не будете знать, что сидите, поскольку ваше тело не будет давить на кресло. Если вы не будете держаться — вы уплывете. Более того, если вы не будете держаться за стену или пол рукой или ногой — вы не сможете сдвинуться с места — не от чего оттолкнуться. По этой причине в любом космическом аппарате всегда много поручней для рук и ног.

Вопросы и задачи

Если налить в стакан воду и бросить туда небольшой кусочек пробки, то, покачавшись, пробка «причалит» к стенке. Как заставить пробку плавать в центре стакана?
Можно ли показать, не пользуясь никакими приборами, что коэффициент поверхностного натяжения у мыльного раствора меньше, чем у чистой воды?
Известно, что брезентовая палатка хорошо защищает от проникновения воды, но если во время дождя дотронуться до потолка рукой, он начинает протекать. Почему?
В каком случае из крана самовара падают более тяжелые капли: когда вода еще горячая или когда она уже остыла?
Почему на поверхности керосина (и многих других горючих жидкостей) никогда не бывает пыли?
Деревянная дощечка, положенная на дно сосуда и залитая затем во-дой, всплывает. Стеклянная пластинка, положенная на дно сосуда и залитая затем ртутью, не всплывает, хотя плавучесть стекла в ртути гораздо больше, чем плавучесть дерева в воде. Почему?
Две смоченные водой стеклянные пластинки трудно отделить друг от друга, пока они находятся в воздухе. Однако они разделяются без всяких усилий, если их опустить в воду. Чем это можно объяснить?
Куда девается мыльная пленка, когда она лопается?
Мыльный пузырь выдули через соломинку так, что он повис на одном ее конце. Что произойдет с пламенем свечи, если к нему поднести другой, открытый конец соломинки? Как будет зависеть поведение пламени от диаметра пузыря?
Есть ли на поверхности мыльного пузыря область, где разрыв его наиболее вероятен?
Если кусочек мела положить в воду, то из него по всем направлениям начнут выходить пузырьки. Почему это происходит?
Для удаления жирных пятен материю проглаживают горячим утю-гом, подложив под нее лист бумаги. Отчего расплавленный жир впитывается в бумагу, а не расходится по материи?
Почему две спички, плавающие на поверхности воды вблизи друг от друга, притягиваются?
Вертикальная капиллярная стеклянная трубка подвешена к коромыслу весов и уравновешена гирями

Что произойдет с весами, если под трубку осторожно подвести сосуд с водой так, чтобы кончик капилляра коснулся ее поверхности?
В капиллярной трубке, опущенной вертикально в воду на глубину l, вода поднялась на высоту h. Нижний конец трубки закрывают, вынимают ее из воды и вновь открывают

Какой будет высота столбика воды, оставшейся в трубке?
В горизонтальный стеклянный капилляр с переменным сечением вводят сначала капельку воды, а затем капельку ртути. Куда будет двигаться каждая капелька?
На какую высоту поднимается смачивающая жидкость в капилляре, если сосуд с жидкостью, куда опущен капилляр, находится в невесомости?

Микроопыт

Подставьте палец под тонкую водопроводную струю на расстоянии нескольких сантиметров от крана — там, где струя еще не распалась на капли. На что станет похожа часть струи над пальцем? Почему?

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: