Как мы различаем цвета

Погода

Погода влияет только исходя из падающего на воду солнечного света. Низкая, плотная облачность приравнивается к сумеречным условиям, солнечный день означает идеальные условия для распознавания цветов. Некоторое значение имеет и наличие ветра, дело в том, что рябь на воде может непредсказуемо отражать от поверхности падающий свет, благодаря чему в толщу воды солнечные лучи будут попадать вспышкообразно и, как бы, выхватывать цветовые нюансы приманки.

Это часто раздражает хищника и вынуждает его на хватку. Многим известно, что в штиль рыба может не брать, но стоит только появиться небольшой ряби и начинаются поклевки. Это происходит не потому, что рыба не видит рыболова и, соответственно, не боится его, просто рябь хаотично меняет освещенность подводного мира.

Темновая фаза фотосинтеза

Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа:

  1. Фаза карбоксилирования (введение CO2 в цикл).
  2. Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).
  3. Фаза регенерации (превращения сахаров).

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле. 

Рис.3. Суммарные уравнения и частные реакции фотосинтеза.

Строение глаз пресноводных рыб

Собственно принцип устройства органов зрения у рыб не оригинален: его природа апробировала на большинстве иных позвоночных (амфибиях, птицах, млекопитающих). То есть, глаза большинства рыб устроены примерно, как у человека: свет попадает на радужку, проходит через зрачок и преломляется на хрусталике. В свою очередь, хрусталик подает свет на сетчатку, состоящую из фоторецепторов двух видов (палочек и колбочек). Именно на сетчатке и возникает изображение, которое видит рыба.

Эта приманка обеспечивает богатый улов даже при плохом клеве! Подробнее

В отличие от человеческого, зрачок большинства рыб имеет фиксированный размер, то есть, не способен увеличиваться или уменьшаться под воздействием света (такую способность имеют зрачки лишь некоторых морских хищников, например, акул или скатов). Форма его может быть как круглой, так и овальной, вплоть до щелевидной. Хрусталики рыб обычно сферические, изредка – слегка вытянутые, причем более плотные, чем у сухопутных животных (помним, что вода – более плотная среда, нежели воздух).

Характеристики сетчатки могут быть самыми различными. Палочки, обеспечивающие видимость в условиях плохой освещенности, превалируют в сетчатке ночных и глубокосумеречных рыб. Колбочки, отвечающие за остроту зрения и цветоразличение, преобладают у дневных видов, активные фазы жизни которых проходят в условиях хорошей освещенности.

Влияние степени прозрачности воды на цвет и уловистость приманки

Имеющие взвешенные частицы в воде рассеивают проникающий свет и уменьшают проникновение его в глубину. Дойдя до дна, интенсивность света увеличивается и на глубине приманки с люминесцентной расцветкой начинает светиться в ультрафиолетовом спектре солнечного света, плюс придает контрастность светлый ил (песок, глина, ракушечник). Это происходит за счет того, что УФ-лучи имеют большую длину волны. Из физики мы знаем, что все цвета имеют свойства отражать себе подобный, а также количество ультрафиолета, в процентном соотношении, находящегося в этом цвете.

Самые сильные отражатели ультрафиолета — это все оттенки синего и фиолетового цветов, далее идут зеленые тона и желтые. Для больших глубин играет роль люминесцентное свечение, а для малых — именно сам цвет приманки. Также, растворенные в воде органические вещества, фитопланктон и взвешенные твердые частицы влияют на абсорбцию света. Они поглощают больше другие волны спектра, чем желтый и зеленый, так как имеют схожий окрас с этими цветами.

Из этого можно сделать вывод, что желтые и зеленые расцветки в период, когда этих взвешенных форм в избытке, будут самыми яркими и заметными. И тот факт, что имеется зависимость между спектральной характеристикой зрительных пигментов рыб и спектральным составом света мест их обитания, абсолютно доказан. Пресноводные хищники более чувствительны к желтым лучам спектра, а морские — к зеленым, что соответствует спектральному составу света в пресных и морских водоемах. У глубоководных морских рыб воспринимаемый спектр вообще значительно срезан в длинноволновой части.

О четкости распознания

Как вы поняли из вышесказанного — немаловажную роль играет сама идентификация объекта. Дальность распознавания хищником объектов определяется свойствами самого объекта (его величиной, цветом, яркостью, формой), оптическими свойствами водной среды и работой собственно самого глаза рыбы (способностью его настраиваться на различные расстояния и остротой зрения). Больший объект будет виден с большего расстояния, что порой работает на нас. В спиннинге есть даже такая тактика — большой приманкой привлечь, мелкой — доловить.

Я думаю, вы не однократно замечали выходы окуня и щуки за внушительной приманкой. Недавний пример был на одной меленькой речке на юге Подмосковья. Щука присутствует, вылетает, красиво атакует — в общем клюет! Азарт спадает, и тут начинаются эксперименты, кто кого. Я работаю двумя уловистыми приманками: Megabass FX9‑STROBE и DUO Tide Minnow 75F, а товарищ меняет их Megabass X‑140, яркого цвета (GP Tonegawa Reaction), и у него каждая проводка заканчивается обязательным выходом и поклевкой! Некрупная щука эту яркую контрастную приманку замечала лучше и мчалась с приличного расстояния за ней!

Палочки

Периферические отростки условно-цилиндрической формы. Длина палочек составляет 0,06 мм, их диаметр 0,002 мм. В составе палочек находится пигмент родопсин, обесцвечивающийся под воздействии света. Палочка может фиксировать попадание нескольких фотонов света.

В структуру палочки входят

  • Наружный сегмент, в котором находятся постоянно обновляемые диски с родопсином;
  • Связующий отдел;
  • Внутренний сегмент с митохондриями, источниками энергии и ядром;
  • Сегмент с нервными окончаниями.

Палочки способны синхронизироваться и собираться в группы для выполнения общей задачи. Благодаря периферийным зрением люди улавливают быстрые движения и воспринимают происходящее вне угла зрения.

Работа палочек зависима от освещенности. В сумерках палочки, когда световых фотонов мало, зрительную функцию исполняют только палочки. При ярком освещении палочки могут воспринимать волны синей части спектра, помогая колбочкам. Поскольку в сумерках колбочки не действуют, глаз человека воспринимает информацию только от палочек и этим объясняется монохромность восприятия в темноте.

Принцип работы фоторецепторов

Процесс деятельности колбочек до сих пор остается не разгаданным. Сегодня существует две ведущих версии, способные наиболее точно описать этот процесс.

Колбочки отвечают за остроту зрения и цветовосприятие (дневное зрение)

Трехкомпонентная гипотеза зрения

Приверженцы данной версии, говорят о том, что в сетчатой оболочке человеческого глаза, расположены несколько видов колбочек, содержащих в себе разные пигменты. Йодопсин – главный пигмент, расположенный в наружном отделе колбочек, имеет 3 разновидности:

  • эритролаб;
  • хлоролаб;
  • цианолаб;

И если первые две разновидности пигмента уже детально изучены, то существование третьего имеет место только в теории, и его существование подтверждают исключительно косвенные факты. Так к какому цвету чувствительны колбочки сетчатки? Если использовать данную теорию как основную, то можно сказать следующее. Колбочки, которые содержат в себе эритролаб, способны к восприятию лишь излучения, имеющего длинные волны, а это желто-красный отдел спектра. Излучение, имеющее среднюю длину или желто-зеленый отдел спектра, воспринимаются колбочками содержащими хлоролаб.

Не лишено логики и утверждение о том, что существуют колбочки, которые обрабатывают излучение коротких волн (оттенки синего цвета), и именно на этом утверждении строится трехкомпонентная теория строения глазной сетчатки.

Нелинейная двухкомпонентная теория

Сторонники этой теории, полностью отрицают существование третьей разновидности пигмента. Они обосновываются тем, что для нормального световосприятия остальных частей спектра, достаточно наличие работы такого механизма, как палочки. Исходя из этого, можно утверждать, что сетчатая оболочка глазного яблока способна воспринимать всю цветовую гамму лишь при совместной работе колбочек и палочек. Также эта теория подразумевает то, что взаимодействие этих структур, порождает способность определения наличия желтых оттенков в гамме видимых цветов. К какому цвету избирательно чувствительны колбочки сетчатки, сегодня ответа нет, так как этот вопрос является не решенным.

На сетчатке здорового взрослого человека около 7 миллионов колбочек

Научно доказано существование людей с редкой аномалией – дополнительной колбочкой глазной сетчатки. Это означает то, что у людей с этим явлением, в глазном яблоке расположен еще один фоторецептор. Люди с данной аномалией, способны различать в 10 раз больше оттенков, чем человек с нормальным количеством рецепторов. Противоречивые исследования приводят следующие данные.

Выявленная патология встречается лишь у 2% процентов населения, притом исключительно женского пола. Однако, вторая исследовательская группа утверждает, что сегодня такая особенность выявлена у четверти Земного населения.

Ретина – сетчатая оболочка глазного яблока, способна воспринимать информацию полноценно, лишь при правильной работе всех внутренних механизмов. Если в одном из компонентов не вырабатываются необходимые вещества, то восприятие цветного спектра значительно сужается. Это явление получило общее название дальтонизм. Пациенты с данным диагнозом, не имеют возможности различать определенные цвета, так как заболевание является генетической наследственностью и не имеет определённого метода лечения.

Улавливание света и распознавание цвета обеспечивают палочки и колбочки сетчатки глаза человека. Это небольшие рецепторы, что расположены в слое сетчатки, помогают глазам улавливать и изменять поток света в импульс. После эти импульсы передаются в мозг. Анатомия рецепторов практически одинаковое. Различие состоит в том, что палочки сетчатки помогают видеть предметы в приглушенном свете, а колбочки — при дневном свете.

Время года

Времена года, чаще всего, не имеют особого значения для использования каких-либо специальных цветов приманок. Здесь решающее влияние могут оказывать особенности кормовых объектов, которыми питаются хищники. Например, хищник питается скатывающейся молодью какой-либо рыбы.

Щука, стоящая после переката, хорошо реагирует на светлые (белые, розовые, перламутровые) цвета силикона, которые сходны в окраске, к примеру, с цветом мелкой густеры или подлещика. Единственное, на что влияет время года – общая прозрачность воды. Весной, во время или после половодья, она мутновата. Летом, развитие водорослей также снижает прозрачность воды. Наиболее прозрачна вода поздней осеню, после отмирания растительности.

Основные различия между палочками и колбочками

Палочки Колбочки
Обеспечивают ночной тип зрения при слабой освещенности Отвечают за дневной тип зрения
Количество палочек в 20 раз превышает кол-во колбочек
Имеют фоточувствительный пигмент одного типа Имеют три типа пигментов
Мембранные диски не связаны с клеточной мембраной Мембранные диски фиксируются на наружной мембране
Обладают высокой чувствительностью. Могу принимать прямой и рассеянный свет Могут распознавать только прямой свет
Достаточно медленная реакция на свет Быстрая реакция на свет, улавливают перемещения
В центральной ямке отсутствуют Находятся преимущественно в центральной ямке
Низкая острота зрения Великолепное разрешение
Повреждения палочек приводят к дневной слепоте или никталопии Повреждения вызывают слепоту или потерю цветового зрения

Вверх

Строение органа зрения человека

Глаза занимают совсем немного места, но при этом отличаются содержанием огромного количества разнообразных анатомических структур, с помощью которых человек видит. Зрительный аппарат практически напрямую связан с головным мозгом, при проведении особых офтальмологических обследований можно увидеть пересечение глазного нерва.

Око включает в себя такие элементы, как стекловидное тело, хрусталик, переднюю и заднюю камеры. Глазное яблоко визуально напоминает шарик и находится в выемке под названием орбита, она образует кости черепной коробки. Снаружи зрительный аппарат имеет защиту в виде склеры.

Внутренняя оболочка зрительного аппарата является важной частью мозгового вещества. В ее состав входят многочисленные нейроны, устилающие изнутри весь глаз

Именно благодаря сетчатке человек различает объекты, окружающие его. На ней происходит сосредоточение преломленных световых лучей и формируется четкое изображение.

Строение зрительной сетчатки глаза

Если говорить о структуре сетчатки глаза, то палочки и колбочки располагаются на одном из лидирующих мест. Наличие данных фоторецепторов на нервных тканях помогает мгновенно трансформировать принятый световой поток в импульсный набор.

Сетчатка заполучает изображение, которое конструируется при помощи глазной части и хрусталика. Потом картинка перерабатывается и поступает на импульсы при помощи зрительных путей в нужную область головного мозга. Сложнейший тип структуры глаза совершает цельное обрабатывание информационных данных за малейшие секунды. Наибольшая часть рецепторов находится в макуле, расположение которой находится в центре сетчатки

Функции родопсина в сетчатке глаза

Родопсин относится к зрительным пигментам, по строению являющийся белком. Относится он к хромопротеинам. В практике его еще принято называть зрительный пурпур. Свое название он получил за счет ярко-красного оттенка. Пурпурное окрашивание палочек обнаружилось и доказалось при проведении многочисленных обследований. Родопсин имеет в своем составе два компонента — желтый пигмент и бесцветный белок.

При воздействии светового потока пигмент начинает разлагаться. Восстановление родопсина происходит во время сумеречного освещения при помощи белка. При яркой освещенности он опять разлагается и его восприимчивость сменяется на синюю зрительную область. Белок родопсина полностью возобновляется в течение тридцати минут. К этому времени зрение сумеречного типа приходит к своему максимуму, то есть человек начинает видеть в темном помещение гораздо лучше.

Признаки поражения палочек и колбочек

  • Понижение зрительной остроты.
  • Нарушение в цветовом восприятии.
  • Проявление молний перед глазами.
  • Суженность зрительного поля.
  • Возникновение пелены перед глазами.
  • Падение сумеречного зрения.

https://youtube.com/watch?v=GsEsMRtE-zU

Время суток

Время суток имеет значение для восприятия рыбами цвета в контексте общей освещенности. Ясным днем на небольшой глубине рыбы различают цвета лучше всего. В этот период нюансы оттенков имеют наибольшее значение, особенно при ловле таких рыб, как щука, окунь или, тем более, лососевые.

Чем ближе время суток к закату или восходу, тем меньше имеют значения цвета приманок. В сумерках цвета различаются хуже всего и для рыбы, практически вся палитра, выглядит в серо-чёрных тонах. В условиях недостаточной освещенности в сетчатке рыб начинают работать палочки вместо колбочек, которые используются для восприятия света.

Нужно учитывать, что даже при встающем солнце в ясную погоду, падающие на воду под острым углом лучи почти полностью отражаются от поверхности, не проникая в толщу. То есть, слепящее ранним утром рыболова солнце ещё не означает, что под водой тоже хорошая видимость. Чем выше встает солнце в течение дня, чем более тупой угол падения лучей, тем больше света проникает в воду и тем лучше рыбы различают оттенки цветов.

Ученые о цветоощущении

С подачи М. В. Ломоносова, еще в 1756 году в труде «Слово о происхождении света, новую теорию о цветах представляющем, июля 1 дня 1756 года говоренном» родилось впервые предположение о так называемой трехкомпонентной природе цветового зрения.

Научная разработка этой гипотезы связана с именами ученых прошлого века — Юнга, Гельмгольца, Максвелла. Существо ее сводится к следующему: нормальное зрение человека обеспечивается одновременной работой трех независимых цветовых приемников, то есть трех видов колбочек, воспринимающих три основных цвета — красный, зеленый и синий.

Нормальное зрение еще называют трихроматическим, трехцветным. Все наши цветовые ощущения происходят при пропорциональном смешивании красного, синего и зеленого цвета, только этих цветовых компонентов.

Существует три внешне схожих вида этих клеток, для распознавания цвета в спектре света и одновременная функциональная активность всех клеток-колбочек обеспечивает нормально восприятие цветовых оттенков.

И все же это было предположение, то есть научная гипотеза и со времени М. В. Ломоносова до нашего времени она и существовала. Чтобы стать теорией, ей не хватало прямых доказательств.

И вот в середине прошлого века, отдельно друг от друга несколькими лабораториями мира были измерены спектры, поглощаемые отдельными клетками-колбочками на сетчатках глаз человека, обезьяны и золотой рыбки. Измерение было осуществлено микроспектрофотометрированием одиночных клеток. Было доказано, что при внешнем сходстве, клетки-колбочки можно разделить на три части — сине-, зелено- и красночувствительные.

Фоторецепторы сетчатки глаза

Фоторецепторы — особые нейроны, реагирующие на световые импульсы. Находятся в зернистом слое сетчатки. Сосредоточены в виде гексагонов (шестиугольников). Есть три разновидности рецепторов-колбочек, отвечающих за восприятие света и одна разновидность палочек,обеспечивающая зрение в сумерках. Сетчатка содержит около 120 млн. палочек и 7 млн. колбочек.

Палочки

Периферические отростки условно-цилиндрической формы. Длина палочек — 0,06 мм, их диаметр 0,002 мм.В составе палочек имеется пигмент родопсин, обесцвечивающийся под воздействии света. Палочка может фиксировать попадание нескольких фотонов света.

В структуру палочки входят

  • Наружный сегмент с постоянно обновляемыми дискиами с родопсином;
  • Связующий отдел;
  • Внутренний сегмент с митохондриями, источниками энергии и ядром;
  • Сегмент с нервными окончаниями.

Палочки способны синхронизироваться объединяться при выполнении общих задач. Периферийным зрением люди улавливают быстрые движения и воспринимают происходящее вне угла зрения.

Работа палочек зависит от освещенности. В сумерках зрительную функцию исполняют только палочки. При ярком освещении палочки могут воспринимать волны синей части спектра, помогая колбочкам. Поскольку в сумерках колбочки не действуют, глаз человека воспринимает информацию только от палочек и этим объясняетсямонохромность восприятия в темноте.

Колбочки

Периферические отростки условно-конической формы. Этот тип клеток преобразует световые сигналы в нервные импульсы.В состав колбочек входит пигмент йодопсин, состоящий из хлоролаба, реагирующего на жёлто-зелёную часть спектра и эритролаба,реагирующего на жёлто-красный участок спектра.

По размеру колбочки меньше палочек — их длина ~ 0 мкм, а диаметр — 2-4 мкм.Колбочки на несколько порядков слабее воспринимают свет, чем палочки, но зато лучше реагируют на быстрые движения.

В структуру колбочки входят

  • наружный сегмент с постоянно обновляемыми и возникающими мембранными полудисками;
  • связующий отдел;
  • внутренний сегмент (включает ядро, митохондрии и полирибосомы);
  • синаптическую область, образующую синапсы с биполярными клетками.

Цветное зрение

Колбочки делят на три вида в зависимости от чувствительности к световым волнам различной длины.

Коротковолновой участок спектра 443 нм Фиолетово-синий S-тип колбочек
Средневолновой участок спектра 544 нм Зелено-желтый M-тип колбочек
Длинноволновый участок спектра 570 нм Желто-красный L-тип колбочек

Число колбочек типов S-, M- и L- также различно. Больше всего колбочек длинно- и средневолновых.Самые малочисленные — S-колбочки, в центральной ямке их также нет.

Основные различия между палочками и колбочками

Палочки Колбочки
Обеспечивают ночной тип зрения при слабой освещенности Отвечают за дневной тип зрения
Количество палочек в 20 раз превышает кол-во колбочек
Имеют фоточувствительный пигмент одного типа Имеют три типа пигментов
Мембранные диски не связаны с клеточной мембраной Мембранные диски фиксируются на наружной мембране
Обладают высокой чувствительностью. Могу принимать прямой и рассеянный свет Могут распознавать только прямой свет
Достаточно медленная реакция на свет Быстрая реакция на свет, улавливают перемещения
В центральной ямке отсутствуют Находятся преимущественно в центральной ямке
Низкая острота зрения Великолепное разрешение
Повреждения палочек приводят к дневной слепоте (никталопии) Повреждения вызывают слепоту или потерю цветового зрения

Влияние освещения на цвет приманки — свет

Свет при прохождении через толщу воды теряет свою энергию. Часть попросту отражается, а часть поглощается. Поэтому некоторые цвета поглощаются пропорционально увеличению глубины. Так теплые цвета блекнут и изменяются на темно-серые и черные. На глубинах от 2 до 4 м блекнет красный, оранжевый и желтый. При глубине 10–15 м — желтый выглядит как зелено-голубой. Не изменяется только голубой, индиго и фиолетовый! В связи с этим освещенность водоема имеет огромную значимость.

В пасмурный день цвета пропадают быстрее, чем в солнечный. А в сумерки, когда интенсивность освещения снижается, глаза перестраиваются на работу лишь палочек

Чтобы привлечь внимание, надо использовать тот цвет, который будет лучше контрастировать с поверхностью воды. Второй подход — использование флюоресцентных приманок, которые будут давать своеобразное свечение на дне

Это будет реализовываться за счет проникающих на глубину УФ-лучей. Так из моего арсенала резины Awaruna светятся следующие расцветки… Не буду сообщать — проверите сами детектором подлинности купюр.

Как устроен глаз человека: палочки и колбочки

Глаз… Тонкая, почти прозрачная, розовая пленка выстилает дно глазного бокала, его заднюю стенку. Это сетчатка. По совершенству своей клеточной архитектуры она может сравниться только с мозгом. Да, собственно говоря, это и есть кусочек мозга, помещенный в глаз.

Под световым микроскопом тонкая сетчатка выглядит как слоеный пирог. В ее верхнем слое содержатся палочки с колбочками – светочувствительные клетки. Такое название они носят из-за внешнего сходства с палочками и бутылочками.

  • Палочки обладают исключительно высокой светочувствительностью: это аппарат ночного, полуночного зрения, безцветового.
  • Колбочки различают цвета, но менее чувствуют свет. Колбочки концентрируются в середине сетчатки, образуя желтое пятно — место наилучшего видения. Их в глазной сетчатке человека около 7 миллионов. Палочек – 125 миллионов, и расположены они по периферии сетчатки.

Строение глаза палочки и колбочки

А теперь о нарушениях в восприятии цветов

Английский ученый Джон Дальтон был первым, кто подробно описал в научной статье одно из нарушений цветового восприятия, которое имел сам. С тех пор всякую форму нарушения восприятия цветов (цветоощущения) называют дальтонизмом.

В основном более распространена так называемое красно-зеленое расстройство, когда человек неспособен различать красный и зеленый цвет с их оттенками. Но эта группа краснозеленослепых распадается на две: краснослепых (их называют протанопами) и зеленослепых — дейтеранопов. У Дальтона была протанопия: он отождествлял светло-красный цвет с темнозеленым.

Возможна также третья форма цветовой слепоты — тританопия, когда человек не различает цвета сине-фиолетового участка солнечного спектра. Мир красок для него содержит лишь красный и зеленый цвет с оттенками. Известны также промежуточные виды нарушения цветоощущения.

Частичную цветовую слепоту, или дихромазию, когда в сетчатке функционируют два из трех цветовых колбочковых приемников, глазные врачи даже не считают болезнью. Правда, подобный дефект ограничивает возможности человека в выборе профессии (об этом немного ниже).

Таблица нарушений цветовосприятия

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: