Мир знаний. могут ли мутации приводить к появлению новых полезных свойств?

Автор книги: Александр Марков

И так далее

Мы рассмотрели далеко не все известные на сегодняшний день механизмы, посредством которых живые организмы могут управлять изменениями собственных геномов или геномов своего потомства. Рассказать обо всех случаях такого рода в рамках одной небольшой книги едва ли возможно, но о некоторых из них все же необходимо вкратце упомянуть – для полноты картины.

Природные генные инженеры.Если вы, дорогие читатели, считаете, что честь изобретения генной инженерии принадлежит человеку, то мне придется вас разочаровать. Генная инженерия была изобретена бактериями задолго до появления Homo sapiens. Мы же не только без спросу позаимствовали чужую идею, но и самих изобретателей заставили себе служить. Жертвой этого вопиющего нарушения авторских прав стал микроб Agrobacterium tumefaciensиз группы альфа-протеобактерий (то есть близкий родственник предков митохондрий, о чем говорилось в главе «Великий симбиоз»). У предков агробактерии, как и у многих добропорядочных микробов, имелся особый молекулярный аппарат, предназначенный для сексуальных контактов с другими микробами. Микробный половой процесс сводится к внесению в цитоплазму других микроорганизмов фрагментов своей ДНК в ходе конъюгации (подробно об этом говорится в главе «Наследуются ли приобретенные признаки?») 88
  Хотя половой процесс у прокариот и инфузорий называется одинаково – «конъюгация», его механизмы очень сильно различаются. В отличие от инфузорий у бактерий при конъюгации один микроб является донором, а другой – реципиентом, то есть гены передаются только в одном направлении. Кроме того, передается не весь геном, а только часть его.. Хитрая агробактерия стала использовать этот полезный аппарат для того, чтобы вводить свою ДНК в клетки растений, на которых агробактерия паразитирует. В результате такой инъекции бактериальные гены начинают работать в растительной клетке, это приводит к усиленному делению клеток и образованию опухоли, в которой агробактерия чувствует себя очень комфортно. Это самая настоящая генная инженерия без всяких оговорок, то есть введение чужеродного генетического материала с целью направленного изменения свойств организма-хозяина. Вся современная генная инженерия растений основана на нещадной эксплуатации агробактерии, которую заставляют вводить в клетки растений различные фрагменты ДНК по прихоти экспериментаторов. Итак, мы видим, что от полового процесса до целенаправленного изменения наследственных свойств – один шаг. А если подумать еще немного, то можно понять, что и шага-то делать не надо. Мы уже пришли. Ведь когда одна бактерия вводит другой бактерии свои гены, разве она не меняет при этом ее наследственные свойства? И разве этот процесс не происходит в известной мере целенаправленно? И разве то, что именно и кому именно будет введено, не может повлиять на эволюцию? Или, может быть, вы думаете, что бактериям все равно, какие гены и кому вводить? Им это далеко не все равно, о чем свидетельствуют имеющиеся у прокариот сложные механизмы химической коммуникации и взаимного узнавания. Вот теперь мы подобрались вплотную к одному секрету, который на самом деле лежит на поверхности. Все живые организмы заботятся о наследственности своего потомства, и естественный отбор вполне в состоянии поддержать такие изменения, которые делают эту заботу более эффективной. Иными словами, эволюция можетсоздавать средства оптимизации самой себя. «Приспособления для эволюции», считавшиеся запретными в классическом неодарвинизме (СТЭ), на самом деле не только возможны – они существуют и окружают нас буквально со всех сторон.

Охарактеризуйте поверхностные структуры микробной клетки и их роль с точки зрения биотехнологии

Основные поверхностные структуры бактериальной клетки — капсула, жгутики и микроворсинки. Их наличие — относительно стабильный признак, используемый для идентификации бактерий.

Клеточную оболочку многих бактерий окружает слой аморфного, сильно обводнённого вещества. Этот покров выполняет важные функции: делает оболочку клетки (состоящей из клеточной стенки и ЦПМ) более плотной и прочной, предохраняет бактерии от воздействия бактерицидных факторов, обеспечивает адгезию на различных субстратах, может содержать запасы питательных веществ.

Организация капсул бактерий. Основную роль в организации капсул бактерий играет ЦПМ. Выделяют микрокапсулы (выявляемые только при электронной микроскопии в виде слоя мукополисахаридных микрофибрилл) и макрокапсулы (обнаруживают при световой микроскопии).

Капсула и слизистый слой не препятствуют поступлению и выходу различных веществ из бактериальной клетки, а также плохо удерживают красители.

Жгу́тик — поверхностная структура, присутствующая у многих прокариотических и эукариотических клеток и служащая для их движения в жидкой среде или по поверхности твёрдых сред. Жгутики бактерий состоят из трёх субструктур:

  • Филамент (фибрилла, пропеллер) — полая белковая нить толщиной 10—20 нм и длиной 3—15 мкм, состоящая из флагеллина, субъединицы которого уложены по спирали. Полость внутри используется при синтезе жгутика — он происходит в направлении от ЦПМ. По полости к собираемому в настоящий момент участку переносятся субъединицы флагеллина.
  • Крюк — более толстое, чем филамент (20—45 нм), белковое (не флагеллиновое) образование.
  • Базальное тело (трансмембранный мотор)

Помимо жгутиков, поверхность многих бактерий покрыта цитоплазматическими выростами — микроворсинками. Обычно это волоски (числом от 10 до нескольких тысяч) толщиной 3-25 нм и длиной до 12 мкм.

Микроворсинки встречают как у подвижных, так и у неподвижных бактерий. Эти выросты способствуют увеличению площади поверхности бактериальной клетки, что дает ей дополнительные преимущества в утилизации питательных веществ из окружающей среды.

Известны специализированные микроворсинки — фимбрии и пили.

Социальная жизнь микробов

Бактерии проявляют различные формы социального поведения, способности к контактному и дистантному общению и формируют многоклеточные коллективы, структура которых во многом напоминает сообщества высших животных – а по некоторым свойствам сравнима даже с человеческим социумом. Изучение общественной жизни микробов помогает наладить диалог микробиологии с этологией (в том числе с социальной этологией и этологией человека).

Общественный образ жизни характерен не только для животных, но и для многих микроорганизмов – одноклеточных эукариот (простейших) и прокариот (бактерий). Изучение коллективных взаимодействий (социального поведения) и информационного обмена (коммуникации) у микробов в последние десятилетия стало одним из самых «модных» направлений в микробиологии (см. ссылки внизу).

В обзорной статье А. В. Олескина, сотрудника кафедры физиологии микроорганизмов биологического факультета МГУ, рассматриваются важнейшие факты, касающиеся общественной жизни микробов. Автор разделяет точку зрения С. Г. Смирнова, который еще в 1972 году ввел понятие «этология бактерий», о приложимости этологического подхода к изучению поведения микробов.

Координированное поведение клеток микроорганизмов проявляется в разных формах:

1) Афилиация – «взаимное притяжение» особей одного вида, группы, стремление «быть вместе». У одноклеточных это свойство проявляется часто в форме когезии – слипания клеток.

Это явление характерно не только для микробов, но даже для клеток разных органов и тканей многоклеточных организмов. Например, «если культивируемые вне организма клетки печени и почек мыши смешать, то «подобное стремится к подобному», и в культуре появляются обособленные агрегаты печеночных и почечных клеток».

Яркий пример афилиации у бактерий – коллективное образование плодовых тел (подробнее об этом см. в заметке «Способность к сложному коллективному поведению может возникнуть благодаря единственной мутации», «Элементы», 25.05.06).

2) Кооперация – объединение особей для совместного выполнения той или иной задачи.

Клетки многоклеточного организма демонстрируют множество примеров кооперации – собственно, сам многоклеточный организм есть не что иное, как результат кооперации множества клеток.

Совет

У бактерий кооперация тоже широко распространена: например, миксобактерии способны к коллективному захвату и перевариванию пищевых частиц; нитчатые цианобактерии, образующие биопленки, при разрыве пленки активно движутся настречу друг другу в месте разрыва и быстро «зашивают» брешь.

Известно много примеров совместного координированного движения множества бактериальных клеток (см.: Swarming motility).

3) Изоляция популяций друг от друга, отказ образовывать смешанные скопления – проявление избирательности афилиации. Это способствует структурированности и обособленности микробных социальных систем (см.: Расшифрован генетический механизм, позволяющий бактериям отличать «своих» от «чужих». «Элементы», 14.07.08).

4) Коллективная агрессия

Царство бактерий. Общее понятие | Учеба-Легко.РФ – крупнейший портал по учебе

Бактерии – типичные прокариотические организмы. Бактерии самые древние поселенцы земли, они живут уже два миллиарда лет. Ученым известно около 2 500 видов. Бактерии имеют клеточное строение, но не имеют ядра, отделенного мембраной от цитоплазмы.

Генетический материал у бактерий представлен пальцевыми молекулами ДНК длинной около 1 мм. Каждая такая молекула состоит из около 5 000 000 пар нуклеотидов. Плазматическая мембрана у бактериальной клетки по структуре и функциям не отличается от таковой эукариотической.

У некоторых бактерий плазматическая мембрана впячивается внутрь и образуются лизосомы – основная их функция – дыхание. Рибосомы в бактериальной клетке разбросаны по цитоплазме. На клеточной стенке некоторых бактерий имеются палочковидные белковые выступы – они необходимы для прикрепления клеток друг к другу.

Клеточная стенка придает бактериальной клетке жесткость и форму. Некоторые бактерии имеют слизистые слои – капсулы. Они служат дополнительной защитой для клеток.

Большинство бактерий не содержит хлорофилла и питается готовыми органическими веществами – гетеротрофно. Бактерии освоили все среды обитания. Они живут практически везде: в почве, в пыли, в воздухе, в воде, на теле животных, внутри живых организмов.

Они сохраняют свою жизнеспособность в горячих источниках при температуре 90 градусов С, в нефтяных скважинах на глубине 1 700 метров, на дне океана – глубже 10 километров. Некоторые бактерии выживают после пятидневного кипячения, в условиях вакуума. Многие бактерии могут жить без кислорода.

Численность бактерий огромна: в одном грамме плодородной почвы может находиться до 2 миллиардов бактерий.

Обратите внимание

Бактерии по форме разнообразны: шаровидные (кокки), палочковидные (бациллы), изогнутые (вибрионы), спиральные (спириллы), в виде цепочки (стрептококки), в виде гроздей (стафилококки). Некоторые бактерии имеют жгутики.

Бактерии очень быстро размножаются, каждые 20-30 минут. Теоретически их численность растет в геометрической прогрессии. Размножение ограничивается климатическими условиями, действием солнечного света, борьбой между видами, накоплением продуктов обмена.

В оптимальных условиях бактериальная клетка растет с огромной скоростью. Достигнув определенного размера, бактериальная клетка приступает к бесполому размножению, перед делением происходит удвоение генетического материала.

У самых быстрорастущих бактерий деление происходит через каждые 20 мин.

По способу добычи пищи гетеротрофные делятся на три группы: паразиты, сапрофиты и симбионты.

Симбиотические бактерии живут на корнях растений и снабжают их азотом, который способны усваивать только бактерии.

Кишечные бактерии обеспечивают нормальную работу пищеварительной системы.

Паразитические бактерии, или болезнетворные, способны выделять токсины (ядовитые вещества, воздействующие на определенные системы органов). Туберкулезная палочка, холерный вибрион вызывают тяжелые болезни и даже смерть. Для профилактики бактериальных заболеваний необходим строгий бактериологический контроль, соблюдение правил личной гигиены, предохранительные прививки.

Бактерии имеют очень важное значение для человека. Это обусловлено ролью микроорганизмов в биосфере

  • Плодородие почв. При жизнедеятельности почвенных бактерий происходит образование гумуса, который представляет собой разложившееся с помощью бактерий органическое вещество, содержащее все необходимые вещества для жизни растений. Кроме того, почвенные бактерии участвуют в круговороте различных веществ. Например, азота.
  • Очистка сточных вод. Для очистки сточных вод применяются микроорганизмы, которые в короткие сроки могут перевести большинство органических соединений в неорганические.
  • Бактерии симбионты. В кишечнике многих животных и человека обитает так называемая микрофлора, которая способна переваривать потребляемую организмом пищу и синтезируют витамины.
  • Промышленное брожение. Путем брожения человек может получать различные вещества, например, уксусная кислота, силос, спирт, кисломолочные продукты.
  • Производство антибиотиков. Эти вещества выделяются некоторыми бактериями и грибами. Эти вещества вызывают угнетение жизнедеятельности других бактерий.
  • Производство кормового белка.
  • Производство ферментов и генная инженерия. Возможность промышленно производить инсулин, получать спирты, кетоны, органические кислоты, полимерные вещества.
  • Биологические методы борьбы с вредителями, различные бактерии могут заражать и вызывать гибель вредителей сельского хозяйства.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: