Эффект зеебека: описание, объяснение и использование

Термоэлектрические устройства и применение эффекта Зеебека

Термоэлектрическими материалами чаще всего являются сплавы, свойства которых похожи на полупроводниковые. К этой же категории можно отнести и некоторые химические соединения со специфическими параметрами, делающими их пригодными для использования в термоэлектрических устройствах.

Существуют три основных варианта применения эффекта Зеебека в различных конструкциях и устройствах:

  • Термоэлектрические генераторы.
  • Термоэлектрические холодильники.
  • Измерители температур в широком диапазоне: от абсолютного нуля до нескольких тысяч градусов по Кельвину.

Незначительная разница температур между спаями, как показали опыты, приводит к появлению термоэлектродвижущей силы, которая пропорциональна температурной разнице элементов, включенных в цепь. Однородные проводники, работающие по закону Ома, имеются в любой диаде. В свою очередь, в ней возникает термоэлектродвижущая сила, которая определяется свойствами проводников и разницей температур. При этом, распределение температуры между контактами не играет какой-либо решающей роли. Это и есть термоэлектрический эффект Зеебека. Если цепь состоит всего лишь из двух разных проводников, то данная комбинация будет называться термопарой. Уровень термо-ЭДС в этом случае зависит от материалов проводников и разницы температур между контактами. В большинстве случаев термопара применяется для определения температурных значений. Измерения до 1400 градусов по Кельвину может производится измерителями, в состав которых входят неблагородные элементы. При температуре 1900 градусов и выше потребуются металлы платиновой группы. Для специальных измерителей очень высоких температур применяются особые жаростойкие сплавы.

Преобразование тепловой энергии в электрическую осуществляется с помощью термоэлектрических генераторов. Основной рабочий процесс этих устройств также связан с эффектом Зеебека. За счет этого может преобразовываться даже сбросовая тепловая энергия, выделяемая двигателями машин. Полученная таким путем электроэнергия используется по своему назначению для питания различных устройств.

Преимуществами таких генераторов является продолжительный срок эксплуатации и возможность их хранения в нерабочем состоянии без каких-либо ограничений. Они отличаются надежностью и устойчивым режимом работы, полностью устраняют риск коротких замыканий. Работа этих устройств абсолютно бесшумна, так как в их конструкции не содержатся подвижные элементы.

Широкого применения эти устройства не получили только по причине низкого коэффициента эффективности, составляющего 3-8%. Однако при отсутствии обычных ЛЭП и низкой предполагаемой нагрузке, использование таких генераторов будет вполне оправданным. В результате, эффект Зеебека применение нашел в области энергообеспечения космической техники, в преобразователях солнечной энергии, отопительных системах и многих других областях, где использование традиционных источников электроэнергии не представляется возможным.

Открытие Томаса Иоганна Зеебека

В 1821 году эстонско-немецкий физик Томас Зеебек провел один любопытный эксперимент: он соединил между собой две пластины, которые были изготовлены из разных материалов (висмут и медь) в замкнутый контур. Затем он нагрел один из контактов. Ученый наблюдал, что магнитная стрелка компаса, который находился поблизости от проводящего контура, начала изменять свое направление. В итоге ученый решил, что два материала (медь и висмут) поляризуются по-разному в результате действия тепла, поэтому определил открытый эффект как термомагнитный, а не термоэлектрический.

Впоследствии уже датский ученый Ханс Эрстед дал правильное объяснение открытому Зеебеком эффекту, назвав его термоэлектрическим процессом.

Открытие Томаса Зеебека

Томас Зеебек (немецкий физик) в 1821 году, то есть спустя 24 года после обнаружения Вольтом контактной разности потенциалов, провел следующий опыт. Он соединил пластину висмута и меди, а рядом с ними расположил магнитную стрелку. В этом случае, как выше было сказано, никакого тока не возникало. Но стоило ученому поднести пламя горелки к одному из контактов двух металлов, как магнитная стрелка начала поворачиваться.

Теперь мы знаем, что причиной ее поворота стала сила Ампера, создаваемая проводником с током, но на то время Зеебек этого не знал, поэтому он ошибочно предположил, что возникает индуцированная намагниченность металлов в результате разницы температуры.

Правильное объяснения этому явлению было дано несколько лет позже датским физиком Хансом Эрстедом, который указал, что речь идет именно о термоэлектрическом процессе, и по замкнутой цепи идет ток. Тем не менее открытый Томасом Зеебеком термоэлектрический эффект в настоящее время носит его фамилию.

КПД процесса

Это самый интересный и актуальный вопрос, который касается рассмотренного термоэлектрического эффекта. Если, приложив разность температур к цепи, можно получать электричество, тогда это явление можно использовать вместо распространенных генераторов, основанных на электромагнитной индукции. Этот вывод верен, если КПД эффекта Зеебека достаточно высок.

Для оценки КПД принято использовать следующее выражение:

Здесь ρ — удельное электрическое сопротивление, λ — коэффициент теплопроводности, Z — фактор эффективности термоэлектрического явления.

Понять это выражение несложно: чем больше коэффициент Зеебека, чем выше подвижность носителей заряда (меньше сопротивление) и чем меньше теплопроводность материала (она способствует выравниванию градиента температуры за счет переноса заряда и за счет движения фононов решетки), тем будет выше производительность цепи как генератора электричества.

Значения Z*T для металлов обычно невысоки, поскольку величина λ является большой. С другой стороны, изоляторы также нельзя использовать из-за их огромных значений ρ. Золотой серединой стало применение полупроводников.

В настоящее время для разных температур получены значения Z*T≈1, что означает следующее: примерно 10 % от затрачиваемого тепла переходит в электрическую энергию (КПД = 10 %). Чтобы этот эффект по эффективности выработки электричества мог конкурировать с современными способами его получения, необходимо разрабатывать материалы, для которых Z*T будет составлять 3-4.

Эффект Зеебека и Пельтье

Суть эффекта Зеебека заключается в образовании электродвижущей силы в электрическом контуре, в состав которого входят проводники А и В, контакты которых обладают разными температурами Т1 и Т2. Данные свойства позволяют выполнять прямое преобразование тепловой энергии в электрическую.

В результате широкое применение в различных областях получил эффект Зеебека, формула которого определяет термо-ЭДС контура: где значения SA и SB являются абсолютными термоэлектродвижущими силами проводников А и В. Абсолютная термо-ЭДС относится к одной из характеристик проводника и представляет собой S=du/dT, где u является электродвижущей силой, возникающей в проводнике при наличии в нем разницы температур. Таким образом, теоретические основы эффекта Зеебека тесным образом связаны с температурными перепадами.

Элемент Пельтье является полной противоположностью устройствам, созданным на основе эффекта Зеебека. В данном случае, наоборот, под действием электрического тока образуется разница температур на рабочих площадках конструкции. Таким образом, с помощью электрического тока осуществляется перенос тепла с одной термопары на другую. При изменении направления тока нагреваемая сторона будет принимать противоположное состояние.

Данный эффект происходит в двух разнородных проводниках с одинаковой проводимостью. В каждом из них электроны обладают разным значением энергии и расположены они на очень близком расстоянии между собой. В результате произойдет перенос зарядов из одной среды в другую, и электроны с более высокой энергией на фоне низких уровней, отдадут излишки кристаллической решетке, вызывая нагрев. При недостатке энергии она, наоборот, передается от кристаллической решетки, приводя к охлаждению спая.

В случае неодинакового типа проводимости, полупроводников присутствующих в термопаре, эффект Пельтье будет выглядеть несколько иначе. При попадании в р-материал, электрон занимает место дырки на энергетическом уровне. В результате, у него теряется кинетическая энергия движения и наступает изменение состояния. Высвобожденная энергия способствует образованию свободных носителей с обеих сторон р-п-перехода, а оставшаяся часть уходит на кристаллическую решетку, которая и вызывает нагрев. Если в начальный момент значение энергии меньше, то спай начнет охлаждаться.

Что такое пьезоэлектрический эффект

Скин-эффект. Принцип работы

Термопара: принцип работы

Применение электрического тока в металлах

Чем отличаются проводники от полупроводников

От чего зависит сопротивление проводника

Коэффициенты Зеебека для некоторых распространенных материалов

В таблице ниже приведены коэффициенты Зеебека при комнатной температуре для некоторых распространенных, неэкзотических материалов, измеренные относительно платины. Коэффициент Зеебека самой платины составляет приблизительно -5 мкВ / К при комнатной температуре, поэтому значения, перечисленные ниже, должны быть соответственно скомпенсированы. Например, коэффициенты Зеебека для Cu, Ag, Au составляют 1,5 мкВ / К, а для Al -1,5 мкВ / К. Коэффициент Зеебека полупроводников очень сильно зависит от легирования, с обычно положительными значениями для материалов с p-легированием и отрицательными значениями для n-легирования.

Материал Коэффициент Зеебека относительно платины (мкВ / К)
Селен 900
Теллур 500
Кремний 440
Германий 330
Сурьма 47
Нихром 25
Молибден 10
Кадмий , вольфрам 7,5
Золото , серебро , медь 6.5
Родий 6.0
Тантал 4.5
Вести 4.0
Алюминий 3.5
Углерод 3.0
Меркурий 0,6
Платина 0 (определение)
Натрий -2,0
Калий -9,0
Никель -15
Константин -35
Висмут -72

Термопара

Если для формирования цепи использовались всего два различных проводника, то эта комбинация носит название термоэлемента или термопары. То, насколько высоким будет уровень термо-электродвижущей силы, определяется тем из каких материалов сделаны проводники и разница между температурами контактов.

Термопары применяются в основном для определения температур.

Чтобы производить измерение температурных значений вплоть для 1400 градусов по Кельвину, будет вполне достаточно применить неблагородные материалы, для измерителей с диапазоном до 1900 градусов будут нужны металлы, относящиеся к платиновой группе, а специальные особо сильные измерители изготавливаются из специальных жаростойких сплавов.

Наиболее обширно распространились модули типа хромель-алюмень. Они оптимальны для работы в окислительных средах, потому как во время нагревания на их поверхности образуется защитное покрытие из оксилов, что не даёт кислороду проникать внутрь сплава. В восстановительной среде эффект становится строго противоположным.

Физические размеры

Когда речь идет про носимые устройства, мы понимаем, что их составные детали должны быть максимально малы (простите за каламбур). Но есть определенный предел, черта, переступив которую мы жертвуем эффективностью в угоду малым размерам.

Два графика выше представляют результаты измерения выходной мощности при изменении толщины слоя ПДМС (теория слева и эксперимент справа). При увеличении толщины ПДМС показатель выходной мощности снижается. Эта теоретическая тенденция была подтверждена на практике, что видно, если сравнить оба графика.

Электрическое поле с заряженной поверхностью TENG-слоя должно распространиться на большее расстояние, когда толщина ПДМС больше, чтобы достичь интерфейса электрод-диэлектрик, где и происходит индукция выходных зарядов. Это приводит к ослаблению электрического поля, что впоследствии приводит к снижению выходной мощности и росту импеданса. Так что принцип «чем больше, тем лучше» тут не применить.

При изменении длины дела обстоят иначе. Выходная мощность растет при удлинении устройства, если сравнить на графике выше показатели при длине 50 мм и 1000 мм. Это хорошо, ибо больше площадь — больше мощности. Однако для компактных устройств, на зарядку которых в основе своей и нацелены TENG-устройства, вряд ли можно было назвать таковыми, если бы они были метр в длину.

Подробности исследования (теоретические модели, формулы, расчеты и т.д.) вы найдете в докладе ученых и в дополнительных материках к нему.

Термопара.

Если материалы цепи рис. 2 однородны, то термо-ЭДС зависит только от выбранных материалов и от температур спаев. Это экспериментально установленное положение, называемое законом Магнуса, лежит в основе применения т.н

термопары устройства для измерения температуры, которое имеет важное практическое значение. Если термоэлектрические свойства данной пары проводников известны и один из спаев (скажем, с температурой T

1 на рис. 2) поддерживается при точно известной температуре (например, 0° C, точке замерзания воды), то термо-ЭДС пропорциональна температуреT 2 другого спая. Термопарами из платины и платино-родиевого сплава измеряют температуру от 0 до 1700° C, из меди и многокомпонентного сплава константана от -160 до +380° C, а из золота (с очень малыми добавками железа) и многокомпонентного хромеля до значений, лишь на доли градуса превышающих абсолютный нуль (0 К, или -273,16° C).

Термо-ЭДС металлической термопары при разности температур на ее концах, равной 100° C, величина порядка 1 мВ. Чтобы повысить чувствительность измерительного преобразователя температуры, можно соединить несколько термопар последовательно (рис. 5). Получится термобатарея, в которой один конец всех термопар находится при температуре T

1, а другой при температуреT 2. Термо-ЭДС батареи равна сумме термо-ЭДС отдельных термопар.

Поскольку термопары и их спаи могут быть выполнены небольшими и их удобно использовать в самых разных условиях, они нашли широкое применение в устройствах для измерения, регистрации и регулирования температуры.

Свойства материалов

Напомним себе, что трибоэлектрическая плотность заряда напрямую зависит от нескольких факторов: трибоэлектрического ряда (чем дальше друг от друга вещества, тем лучше они взаимодействуют, в ролике выше это упоминается), структурирования трибоэлектрических поверхностей, площади контакта под воздействием прилагаемой силы и от факторов окружающей среды.

Для проверки того что и как на что влияет была использована DDEF модель при синусоидальном движении (частота = 1 Гц, амплитуда = 1 мм), при этом параметры устройства совпадают с теми, что в практическом эксперименте.

Анализ данных показывает, что показатель выходной мощности возрастает при увеличении плотности заряда. При этом внутренний импеданс не меняется при изменении плотности заряда.

А вот изменения параметров в окружающей среде, таких как влажность, температура и давление, естественно, влияют на плотность заряда, делая этот показатель нестабильным. Если же устройство работает в контролируемой среде, то удается сохранить стабильность этого показателя. Конечно, это весьма печально, так как на практике мы не будем пользоваться своими устройствами только в определенных условиях. Посему этот момент также отправлен учеными на дальнейшую доработку и исследование.

Также ученые отмечают, что данный теоретический эксперимент хоть и показывает яркие взаимосвязи, но на практике крайне сложен в реализации, поскольку изменение какого-то параметра материала в реальности означает замену самого материала, а это значит и изменение всех других свойств.

Принципы

Базовая термоэлектрическая сборка.

На рисунке напротив показана основная термоэлектрическая схема. Два проводящих материала разной природы a и b соединены двумя переходами, расположенными в точках X и W. В случае эффекта Зеебека разница температур dT применяется между W и X, что приводит к появлению разности потенциалов dV. между Y и Z.

В разомкнутой цепи коэффициент Зеебека пары материалов, S ab , или термоэлектрическая мощность , определяется как:

Sвбзнак равноdVdТзнак равноVY-VZТW-ТИкс{\ displaystyle S_ {ab} = {\ frac {dV} {dT}} = {\ frac {V_ {Y} -V_ {Z}} {T_ {W} -T_ {X}}} \,}

Если для T W > T X разность потенциалов такова, что V Y > V Z , то S ab положительна.

Коэффициент Зеебека каждого из материалов связан с коэффициентом крутящего момента соотношением:

Sвбзнак равноSб-Sв{\ Displaystyle S_ {ab} = S_ {b} -S_ {a} \,}

Коэффициент Зеебека выражается в ВК -1 (или, в более общем смысле, в мкВ К -1, учитывая значения этого коэффициента в обычных материалах).

Уильям Томсон (лорд Кельвин) показал, что коэффициент Зеебека связан с коэффициентами Пельтье и Томсона согласно:

Πвбзнак равноSвбТ{\ Displaystyle \ Pi _ {ab} = S_ {ab} T \,}
τвзнак равноТdSвdТ{\ displaystyle \ tau _ {a} = T {\ frac {dS_ {a}} {dT}} \,}

где Π ab — коэффициент Пельтье пары, T — температура (в Кельвинах) рассматриваемого перехода, а τ коэффициент Томсона одного из материалов.

Как описывают это термоэлектрическое явление?

Очень просто, для этого вводят некий параметр S, который получил название коэффициента Зеебека. Параметр показывает, ЭДС величины индуцируется, если поддерживается разность температур контактов равная 1 Кельвину (градусу Цельсия). То есть можно записать:

Здесь ΔV — ЭДС цепи (напряжение), ΔT — разность температур горячего и холодного спаев (зон контакта). Эта формула является лишь приближенно верной, поскольку S в общем случае зависит от температуры.

Значения коэффициента Зеебека зависят от природы материалов, вступивших в контакт. Тем не менее однозначно можно сказать, что для металлических материалов эти значения равны единицам и десяткам мкВ/К, в то время как для полупроводников они составляют сотни мкВ/К, то есть полупроводники обладают на порядок большей термоэлектрической силой, чем металлы. Причиной этого факта является более сильная зависимость характеристик полупроводников от температуры (проводимость, концентрация носителей заряда).

Эффект Томсона (Кельвина)

Он также входит в список термоэлектрических явлений. Открыл его лорд Кельвин (Уильям Томсон) в 1851 году. Он объединяет явления, наблюдаемые Пельтье и Зеебеком. Суть эффекта Томсона следующая: если на концах проводника создать разную температуру, а затем приложить к ним напряжение, то проводник начнет обмениваться теплом с окружающей средой. То есть он может не только его выделять, но и поглощать, что зависит от полярности потенциалов и разности температур на концах.

Отличие этого эффекта от двух предыдущих заключается в том, что он реализуется на одном, а не на двух разных проводниках.

Все три термодинамических эффекта связаны математически друг с другом.

Ячейка Пельтье

Когда говорят о петентах на термо генераторные модули с эффектом Зеебека, то, конечно же, первым делом вспоминают про ячейку Пельтье. Она представляет собой компактное устройство (4x4x0,4 см), изготовленное из ряда последовательно соединенных проводников n- и p-типа. Изготовить ее можно своими руками. Эффекты Зеебека и Пельтье лежат в основе ее работы. Напряжения и токи, с которыми она работает, невелики (3-5 В и 0,5 A). Как было сказано выше, КПД ее работы очень маленький (≈10 %).

Применяется она для решения таких бытовых задач, как нагрев или охлаждение воды в кружке или подзарядка мобильного телефона.

Источник

Сферы применения эффекта Зеебека

Одно из значимых ограничений, возникающих при использовании термоэлектрического преобразователя, заключается в низком коэффициенте эффективности – 3-8%. Но если нет возможности для проведения стандартных линий электропередач, а нагрузки на сеть предполагаются небольшие, тогда применение термоэлектрических генераторов вполне оправдано. На самом деле, устройства, работающие на эффекте Зеебека, могут применяться в самых различных сферах:

  • Энергообеспечение космической техники;
  • Питание газо- и нефте- оборудования;
  • Бытовые генераторы;
  • Системы морской навигации;
  • Отопительные системы;
  • Эксплуатация отводимого автомобильного тепла;
  • Преобразователи солнечной энергии;
  • Преобразователи тепла, вырабатываемого природными источниками (например, геотермальными водами).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните накарту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Физическое объяснение эффекта

Описанный термоэлектрический эффект является достаточно непростым явлением. Для его понимания рассмотрим систему, состоящую из медного и железного проводников, соединенных между собой

Обратим внимание на процессы, которые происходят в зоне контакта Cu-Fe, которая нагревается. Приобретая дополнительную кинетическую энергию, электроны в области нагрева создают более высокое «давление» электронного газа, поэтому стремятся убежать из нее к более холодному концу контура

Наоборот, контакт Cu-Fe, который охлаждается, вызывает потерю кинетической энергии носителей заряда, это ведет к снижению создаваемого ими давления в зоне контакта. Последний факт приводит к привлечению в холодную область свободных носителей заряда.

Если бы металлы в контакте были одинаковыми, то скорости дрейфа электронов в результате разности температур были бы одинаковыми, а их направления в каждом проводнике — противоположными, то есть никакой разности потенциалов бы не возникло. Но поскольку металлы имеют разную природу, то они различным образом реагируют на нагрев (изменение «давления» электронов и скорость их дрейфа разные для Fe и Cu). В этом и заключается причина появления ЭДС в зоне контакта.

Отметим, что при объяснении физики процесса использовалась аналогия с идеальным газом.

Направление возникающего термотока, а также его величина определяются природой металлов, разницей температур контактов, а также особенностями самой электрической замкнутой цепи.

Если рассмотреть физику процесса для пары металл-полупроводник, то она не будет отличаться от таковой для рассмотренной пары металл-металл. Приложение разности температур к двум контактам металла с полупроводником вызывает в последнем поток электронов (n-тип) или дырок (p-тип) от горячей области к холодной, что приводит к появлению разности потенциалов.

Если не поддерживать разность температур за счет отвода тепла от холодной зоны и его подвода к горячему контакту, то в цепи быстро устанавливается термодинамическое равновесие, и ток прекращает течь.

Термоэлектрические свойства металлов.

Эффект Зеебека обычно легче других термоэлектрических эффектов поддается надежным измерениям. Поэтому его обычно и используют для измерения термоэлектрических коэффициентов неизвестных материалов. Поскольку термо-ЭДС определяется свойствами обеих ветвей термопары, одна ветвь должна быть из некоего «опорного» материала, для которого известна «удельная» термо-ЭДС (термо-ЭДС на один градус разности температур). Если одна ветвь термопары находится в сверхпроводящем состоянии, то ее удельная термо-ЭДС равна нулю и термо-ЭДС термопары определяется величиной удельной термо-ЭДС другой ветви. Таким образом, сверхпроводник – идеальный «опорный» материал для измерения удельной термо-ЭДС неизвестных материалов. До 1986 самая высокая температура, при которой металл можно было поддерживать в сверхпроводящем состоянии, составляла лишь 10 К (-263° C). В настоящее время сверхпроводники можно использовать приблизительно до 100 К (-173° C). При более высоких температурах приходится проводить измерения с несверхпроводящими опорными материалами. До комнатной и несколько более высоких температур опорным материалом обычно служит свинец, а при еще более высоких – золото и платина. См

.также СВЕРХПРОВОДИМОСТЬ.

Эффект Зеебека в металлах имеет две составляющие – одна из них связана с диффузией электронов, а другая обусловлена их фононным увлечением. Диффузия электронов вызывается тем, что при нагревании металлического проводника с одного конца на этом конце оказывается много электронов с высокой кинетической энергией, а на другом – мало. Электроны с высокой энергией диффундируют в сторону холодного конца до тех пор, пока дальнейшей диффузии не воспрепятствует отталкивание со стороны избыточного отрицательного заряда накопившихся здесь электронов. Этим накоплением заряда и определяется компонента термо-ЭДС, связанная с диффузией электронов.

Компонента, связанная с фононным увлечением, возникает по той причине, что при нагревании одного конца проводника на этом конце повышается энергия тепловых колебаний атомов. Колебания распространяются в сторону более холодного конца, и в этом движении атомы, сталкиваясь с электронами, передают им часть своей повышенной энергии и увлекают их в направлении распространения фононов – колебаний кристаллической решетки. Соответствующим накоплением заряда определяется вторая компонента термо-ЭДС.

Оба процесса (диффузия электронов и их фононное увлечение) обычно приводят к накоплению электронов на холодном конце проводника. В этом случае удельная термо-ЭДС по определению считается отрицательной. Но в некоторых случаях из-за сложного распределения числа электронов с разной энергией в данном металле и из-за сложных закономерностей рассеяния электронов и колеблющихся атомов в столкновениях с другими электронами и атомами электроны накапливаются на нагреваемом конце, и удельная термо-ЭДС оказывается положительной. Наибольшие термо-ЭДС характерны для термопар, составленных из металлов с удельными термо-ЭДС противоположного знака. В этом случае электроны в обоих металлах движутся в одном и том же направлении.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: