Митоз, мейоз и амитоз

Интерфаза, или подготовка к делению

Интерфаза наблюдается как в половых клетках, так и в клетках тела. В этом состоянии клетки находятся в периоде между делениями или на последней стадии своей жизни, когда все процессы завершены и идет подготовка к естественному отмиранию. Несмотря на то, что эту фазу называют состоянием покоя, крошечная структура выполняет важную деятельность, требующую высоких энергетических затрат

Для понятия важности интерфазы стоит указать, что она занимает до 90% времени всего клеточного цикла.Несмотря на отличия в процессах митоза и мейоза, интерфаза выполняет очень схожие роли для организма в целом.
В состоянии покоя происходит выработка ферментов и биосинтез белка, удваиваются важнейшие структуры, например, ДНК. Клетка растет, накапливает энергию, увеличивается в размерах и готовится к последующему разделению

Интерфаза происходит в несколько этапов, по завершению которых начинается митоз или мейоз.

Половой процесс солелюбивой археи Haloferax — нечто промежуточное между типичным прокариотическим и эукариотическим сексом

Если эукариотический секс — исходная черта эукариот, то имеет смысл поискать среди современных архей варианты генетического обмена, переходные между типичным прокариотическим и эукариотическим сексом. Крайне интересно было бы выяснить, как меняются генами локиархеи, но об этом пока ничего не известно. На сегодняшний день подробно изучена система генетического обмена только у одной археи — солелюбивого (галофильного) микроба Haloferax volcanii, обитателя Мертвого моря. Об этом микробе рассказано в новости Альтернативный способ репликации ДНК оказался эффективнее традиционного. У Haloferax обнаружена система передачи генетического материала, действительно похожая на что-то промежуточное между обычным прокариотическим ГПГ (например, конъюгацией бактерий) и эукариотическим сексом (рис. 3).

Клетки Haloferax спариваются, соединяясь цитоплазматическими мостиками, по которым геномная ДНК может передаваться в обе стороны, то есть обе клетки могут быть как донорами, так и реципиентами генетического материала. При этом могут передаваться крупные фрагменты хромосомы (длиной до 13% генома как минимум). В лаборатории можно добиться даже слияния клеток: для этого нужно понизить концентрацию Mg2+ в среде, что приводит к растворению клеточных стенок и дестабилизации цитоплазматических мостиков (рис. 3, справа). Предполагается, что такое слияние иногда может происходить и в природе.

В 2010 году была предложена красивая гипотеза, связывающая воедино происхождение эукариот и полового размножения и опирающаяся в том числе на данные по половому процессу Haloferax (см.: J. Gross, D. Bhattacharya, 2010. Uniting sex and eukaryote origins in an emerging oxygenic world, статья в открытом доступе). В статье обосновываются три положения:

1) Первые эукариоты появились в раннепротерозойских мелководных местообитаниях, когда концентрация кислорода начала расти, но озонового экрана еще не было. Под действием ультрафиолета на мелководьях должна была повыситься концентрация активных форм кислорода — сильных мутагенов. Появление эукариот стало закономерным итогом попыток архей защититься от этой напасти.

2) Архейные предки эукариот обменивались генами примерно так же, как современный Haloferax. Авторы выстроили гипотетический сценарий постепенного эволюционного перехода от полового процесса Haloferax к полноценному эукариотическому сексу.

3) Совершенствование системы генетического обмена было необходимо предкам эукариот, потому что они использовали чужую ДНК в качестве матрицы для починки разрывов двойной спирали ДНК при помощи гомологичной рекомбинации.

При всех достоинствах этой гипотезы, она не учитывает одну важную деталь, которая не противоречит первым двум пунктам, но сильно бьет по третьему. Дело в том, что Haloferax, как и многие другие археи, является полиплоидом. В каждой клетке Haloferax содержится в среднем по 17 копий генома (кольцевых хромосом).

Мейоз и его роль в процессе размножения

Этот способ деления образует уже не две, а четыре клетки, при этом в каждой вдвое уменьшается количество хромосом, но сохраняется генетическая информация. Такой набор хромосом еще называют гаплоидным.
Перед началом мейоза половые клетки удваивают свой исходный материал. Далее начинается профаза 1, или первая фаза первого этапа, которая занимает больше всего времени и является самым сложным периодом во время всего мейоза.Первый этап имеет много сходств с митозом — хромосомы также укорачиваются, затем расходятся к полюсам с образованием новой ядерной оболочки, но с сохранением веретена деления. Иногда после этих процессов наступает очень короткий период интерфазы, но без удвоения количества ДНК. Далее начинается второй этап. Разделяется клеточный центр, ядерная оболочка снова разрушается, а перпендикулярно сохранившемуся веретену деления образуется еще одно. Хромосомы снова делятся и расходятся к полюсам, и в результате получаются четыре новых структурных единицы.Процесс мейоза настолько сложен и интересен, что для более подробного описания может понадобится еще одна статья. Если подытожить кратко, то во время мейоза образуются четыре клетки, но у каждой вдвое уменьшено количество хромосом. Получившиеся клетки готовы к оплодотворению, в результате которого при слиянии материнского и отцовского генетического материала восстанавливается диплоидность, то есть новая клетка будущего организма снова получает удвоенное количество хромосом.

Рис. 3. Амитоз или прямое деление

Задания на мейоз в ЕГЭ по биологии

В экзамене достаточно много вопросов о делении клетки, они встречаются и в первой, и во второй части. Каждое из них может принести от одного до трех первичных баллов.

Пример 1

В ядрах клеток слизистой оболочки кишечника позвоночного животного 36 хромосом. Определите число молекул ДНК в анафазе второго деления мейоза при образовании гамет? В ответ запишите только соответствующее число.

Решение. В анафазе второго деления клетки диплоидный набор  хромосом и ДНК – 2n2c, так как к полюсам расходятся двухроматидные хромосомы. В клетках слизистой оболочки набор тоже диплоидный, клетка соматическая. Число молекул ДНК совпадает с диплоидным набором и равняется 36.

Ответ: 36.

Пример 2

Установите последовательность процессов, происходящих в ходе мейоза.

  1. расположение пар гомологичных хромосом по экватору
  2. расхождение гомологичных хромосом
  3. расхождение сестринских хроматид
  4. образование гаплоидных ядер с однохроматидными хромосомами
  5. конъюгация

Решение. Один из вариантов решения, разобрать в какой из стадий происходит каждый из процессов, а потом расставить фазы деления по местам.

  • Гомологичные хромосомы располагаются парами по экватору в первую метафазу и образуют экваториальную пластинку.
  • Расхождение гомологичных, а значит двухроматидных хромосом, к полюсам происходит в анафазу первого деления.
  • Сестринские хроматиды, а значит однохроматидные, расходятся к полюсам в анафазу второго деления.
  • Гаплоидные ядра с однохроматидными хромосомами имеют набор nc, перед нами телофаза 2.
  • Последний вариант «конъюгация» — это сближение гомологичных хромосом с образованием бивалента и происходит этот процесс в профазе первого деления.

Дальше вспоминаем последовательность фаз, для этого можно использовать слово «ПРИМАТ». Буквы в нем расположены в том же порядке, как и названия фаз во время деления.

Ответ: 51234.

Пример 3

Соматические клетки козы содержат 60 хромосом. Как изменится число хромосом и молекул ДНК в ядре при гаметогенезе перед началом деления и в конце телофазы мейоза I? Объясните результаты в каждом случае.

Решение. 

  1. В соматических клетках набор 2n2c- 60 хромосом и 60 молекул ДНК.
  2. В интерфазе, перед началом деления проходит репликация ДНК, набор 2n4с- 60 хромосом и 120 молекул ДНК
  3. В конце телофазы мейоза I набор 1n2c- 30 хромосом и 60 молекул ДНК, так как в анафазе I к полюсам расходятся двухроматидные хромосомы, а в телофазе I клетка делится на две клетки с гаплоидным набором двухроматидных хромосом.

Как видите, задания на мейоз в ЕГЭ по биологии вполне реально решить! Немного практики — и заветные баллы у вас в кармане

Если хотите разобраться в остальных темах, обязательно обратите внимание на курсы MAXIMUM. Приходите к нам на бесплатную консультацию по подготовке к ЕГЭ — чем раньше приступите к подготовке, тем больше будет времени, чтобы найти все слабые места и проработать их

Записывайтесь и начните путь к высоким баллам ЕГЭ уже сейчас!

Испытание на прочность

Всякая гипотеза, чтобы получить признание, должна пройти проверку временем и новыми фактами. Это — дело будущего. Впрочем, несколько испытаний наша гипотеза уже благополучно прошла в процессе подготовки к печати.

Во-первых, в 2015 году, когда работа над моделью уже была в разгаре, появилось сообщение о том, что у архей обнаружена строгая корреляция между полиплоидностью и наличием гистонов (S. K. Spaans et al., 2015. The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1). То, что у некоторых архей есть гистоны, было известно давно, и этот факт всегда считался важным аргументом в пользу того, что предками эукариот были именно археи. Новые данные показывают, что этот аргумент приложим только к полиплоидным археям. Связь между гистонами и полиплоидностью, по-видимому, объясняется тем, что гистоны помогают упаковывать множество копий генома в одной маленькой прокариотической клетке.

Во-вторых, из нашей гипотезы вытекает одно очень специфическое проверяемое следствие. Если эукариоты произошли от полиплоидных архей, которые приобрели митоз, это обязательно должно было привести к массовому появлению новых семейств близкородственных генов (паралогов) у базальных эукариот (подобно тому, как это происходит у эукариот в результате полногеномных дупликаций, но только в большем масштабе). Как выяснилось, сравнительная геномика подтверждает это предсказание: еще в 2005 году Евгений Кунин и его коллеги показали, что на заре эволюции эукариот был период массового приобретения новых семейств паралогичных генов (K. S. Makarova et al., 2005. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell).

В третьих, один из рецензентов указал нам на несоответствие, состоящее в том, что все известные полиплоидные археи относятся к эвриархеям, тогда как эукариоты ближе к другой группе архей — кренархеям (к которым относятся, в том числе, и ближайшие родичи эукариот — локиархеи). Все кренархеи, чья плоидность известна, являются либо моноплоидами либо, самое большее, диплоидами. Плоидность локиархей неизвестна, ведь этих микробов никто даже не видел — известны только их геномные последовательности. Но, поскольку среди кренархей полиплоидов не обнаружено, предположение о полиплоидности локиархей выглядит маловероятным.

На помощь пришли гистоны. Поскольку было показано, что плоидность у архей коррелирует с наличием гистонов, можно посмотреть, нет ли гистонов у локиархей. В оригинальной статье с описанием локиархей гистоны не упоминаются. Однако в декабре 2015 года появилось сообщение об идентификации в геномах локиархей нескольких гистонов, да не каких-нибудь, а самых замечательных — переходных по своей аминокислотной последовательности между гистонами эвриархей и эукариот (B. Henneman, R. T. Dame, 2015. Archaeal histones: dynamic and versatile genome architects).

Так что пока всё сходится, и сам я сейчас процентов на 95 уверен, что эукариоты действительно произошли от полиплоидных архей, которые изобрели митоз.

Журнал Biology Direct использует уникальную систему открытого рецензирования: мало того, что рецензенты не анонимны, так еще и их рецензии публикуются вместе со статьей. Поэтому заинтересованный читатель может по приведенной ссылке ознакомиться не только с текстом статьи, но и с реакцией на нее ведущих специалистов по биоинформатике и геномике, галоархеям, биохимии и происхождению жизни.

Александр Марков

  1. elementy.ru

Деление эукариотических клеток

Основой размножения и индивидуального развития организмов является деление клетки.

Описано три типа деления эукариотических клеток:

· 1) амитоз — прямое деление;

· 2) митоз — непрямое деление;

· 3) мейоз — редукционное деление.

Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путем перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотический цикл.

Митоз

Митоз — тип деления клеток, в результате которого дочерние клетки получают генетический материал, идентичный тому, который содержался в материнской клетке.

Стадии митоза. Митоз состоит из четырех стадий (рис. 5.2).

· 1. Профаза — хромосомы спирализуются, центриоли (у животных клеток) расходятся к полюсам клетки, распадается ядерная оболочка, исчезают ядрышки и начинает формироваться веретено деления.

· 2. Метафаза — хромосомы, состоящие из двух хроматид, прикрепляются своими центромерами к нитям веретена деления. При этом все они располагаются в экваториальной плоскости. Эта структура называется метафазной пластинкой.

· 3.Анафаза — центромеры делятся и нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам. Теперь разделенные хроматиды называются дочерними хромосомами.

· 4. Телофаза — дочерние хромосомы достигают полюсов клетки, де- спирализуются, нити веретена деления разрушаются, вокруг хромосом образуется ядерная оболочка, ядрышки восстанавливаются. Два образовавшихся ядра генетически идентичны. После этого следует цитокинез (деление цитоплазмы), в результате которого образуются две дочерние клетки.Органоиды распределяются между ними более или менее равномерно.

Биологическое значение митоза. В результате митоза достигается генетическая стабильность; увеличивается число клеток в организме; происходит рост организма; возможны явления регенерации и бесполого размножения у некоторых организмов.

Мейоз

Мейоз — тип деления клеток, сопровождающийся редукцией числа хромосом. В результате из первично диплоидных клеток образуются гаплоидные. В ходе мейоза наблюдается два клеточных деления, причем удвоение числа хромосом происходит только перед первым делением. Таким образом, из одной диплоидной клетки, делящейся мейотически, образуется четыре гаплоидных.

· 1. Профаза I (профаза первого мейотического деления) — происходят процессы, аналогичные процессам профазы митоза. Кроме того, гомологичные хромосомы, представленные двумя хроматидами, сближаются и «слипаются» друг с другом. Этот процесс называется конъюгацией. При этом происходит обмен участков гомологичных хромосом — кроссинговер (перекрест хромосом), т.е. обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга.

· 2. Метафаза I — происходят процессы, аналогичные процессам метафазы митоза.

· 3. Анафаза / —в отличие от анафазы митоза центромеры не делятся и к полюсам клетки отходят не по одной хроматиде от каждой хромосомы, а по одной хромосоме, состоящей из двух хроматид, скрепленной общей центромерой.

4. Телофаза /— образуются две клетки с гаплоидным набором.

После завершения первого мейотического деления следует короткая интерфаза второго мейотического деления. Причем на этой стадии репликации (удвоения) ДНК не происходит и, следовательно, диплоидность не восстанавливается.

Процессы, протекающие в профазе II, метафазе II, анафазе II, телофазе //аналогичны процессам во время митоза.

Таким образом, из одной диплоидной клетки, делящейся мейотически, образуется четыре гаплоидных.

Биологическое значение мейоза состоит не только в обеспечении постоянства числа хромосом у организмов из поколения в поколение. Благодаря кроссинговеру и случайному расхождению гомологичных хромосом на анафазе № 1 деления, возникающие гаплоидные клетки содержат различные сочетания хромосом. Это обеспечивает разнообразие хромосомных наборов и признаков у последующих поколений и, таким образом, дает материал для эволюции организмов.

Источник

Деление клетки как основа размножения, индивидуального развития организмов. Роль митоза и мейоза

Деление клеток – это основной процесс, который лежит в основе размножения, роста и развития всех живых организмов. В результате деления из одной материнской клетки образуется две дочерних идентичных материнскому организму клетки. Рост различных органов и тканей растений и животных возможен только благодаря процессу деления. 

Роль митоза. Основным способом деления клетки является митоз. Его биологическое значение в том, что этот процесс лежит в основе роста и вегетативного размножения всех организмов, которые имеют в составе клетки ядро (эукариоты). Благодаря митозу, число хромосом в клеточных поколениях остаётся постоянным, таким образом, дочерний организм получает точно такой же набор хромосом, следовательно, такой же генетический материал, который содержался в ядре материнской клетки.

Роль мейоза. Биологическое значение мейоза заключается в том, что этот процесс поддерживает постоянное число хромосом при наличии полового процесса. Важным является то, что в процессе мейоза происходит кроссинговер, в результате которого происходит обмен генетической информацией и появление в хромосомах новых наследственных признаков. Таким образом, мейоз обеспечивает свойства комбинативной изменчивости, результатом которой служат новые сочетания признаков при дальнейшем оплодотворении.

Эти два процессы играют важнейшую роль в жизнедеятельности каждого организма. Именно они лежат в основе онтогенетического и филогенетического развития живых организмов.

Первое деление

Чем мейоз функционально отличается от митоза? Дело в том, что в мейозе происходит не одно деление, а два. Их так и называют: первое и второе деление мейоза. В каждом делении по 4 фазы. Тут нам повезлоЕ называются эти фазы так же, как и фазы митоза, поэтому сложностей с ними обычно не возникает. Между делениями не проходит интерфаза, клетка может немного «отдохнуть», но удвоения ДНК не происходит. 

Рассмотрим фазы каждого деления подробнее.

Профаза первого деления

Начинается мейоз практически так же, как и митоз. Хромосомы спирализуются, ядро и ядерная оболочка распадается, центриоли клеточного центра расходятся к полюсам и начинают формировать веретено деления. А вот дальше начинается самое интересное – хромосомы встречают свою гомологичную пару.

Что же такое гомологичные хромосомы? Все мы знаем, что половину хромосом при оплодотворении получаем от материнского организма, а другую половину от отцовского. Так вот, гомологичные хромосомы сходны по строению, размеру и несут одинаковый набор генов (но, возможно, разные аллели). Одну из таких хромосом организм получает от матери, а вторую от отца. Такие хромосомы подходят близко друг к другу, это называется конъюгация, и могут даже обменяться участками – это кроссинговер.

После этого хромосомы хаотично располагаются в цитоплазме. При этом набор хромосом и ДНК по сравнению с интерфазой не меняется (меняется только генетическая информация), а остается таким же, как в интерфазе – 2n4c.

Метафаза первого деления

Помните, что метафаза — самая статичная и красивая из всех фаз? Хромосомы выстраиваются по экватору гомологичными парами, друг напротив друга. Нити веретена деления прикрепляются к центромере хромосомы, которая расположена ближе к тому полюсу, где находится центриоль. Таким образом, каждую хромосому нить фиксирует только  одной стороны. Набор остается 2n4c.

Анафаза первого деления

Нити веретена деления сокращаются и растаскивают к полюсам по одной из пары гомологичных двухроматидных хромосом. Хромосомы расходятся к полюсам, а набор в клетке не меняется, так и остается 2n4c.

Телофаза первого деления

Дальше клетка действует, как будто по инерции. Она продолжает работать по тому же алгоритму, что и в митозе. Поэтому в первой телофазе хромосомы деконденсируются, формируются ядра и ядерные оболочки, клетка делится на две, при этом набор в каждой из новых клеток тоже делится пополам и становится 1n2c. С этим набором клетка переходит во второе деление.

Происхождение эукариот и половое размножение

Появление эукариот — второе по значимости событие в истории земной жизни (первое — само появление жизни). Эукариотическая клетка устроена гораздо сложнее, чем прокариотическая, а промежуточные формы между ними, существовавшие когда-то, давно вымерли. Поэтому вопрос о происхождении эукариот остается одной из самых сложных и спорных тем в эволюционной биологии (см.: А. В. Марков, А. М. Куликов, 2009. Происхождение эукариот как результат интеграционных процессов в микробном сообществе). Правда, недавно ситуация резко изменилась к лучшему в результате открытия локиархей — неизвестной ранее группы архей, обладающей многими признаками, которые до сих пор считались уникальными для эукариот.

Но даже с учетом локиархей получается, что эволюционный путь от последнего общего предка с ближайшими архейными родственниками до последнего общего предка всех современных эукариот (LECA, last eukaryotic common ancestor) был долгим и трудным. На этом пути предки эукариот приобрели целый ряд признаков, которых нет ни у кого из прокариот, даже у локиархей. Одним из последних шагов на этом пути, по-видимому, стало приобретение внутриклеточных симбионтов — альфапротеобактерий, давших начало митохондриям.

К числу эукариотических инноваций, наиболее трудных для объяснения, относится эукариотический секс (называемый также амфимиксисом или, попросту, половым размножением). Это специфический и очень эффективный способ перемешивания генетического материала разных особей, включающий сингамию (слияние гаплоидных клеток или ядер, приводящее к удвоению хромосомного набора) и мейоз (особый вариант клеточного деления, приводящий к сокращению числа хромосом вдвое). Мейоз сопровождается кроссинговером, в ходе которого гомологичные хромосомы обмениваются гомологичными участками.

Прокариотический секс устроен гораздо проще: это однонаправленная передача небольших фрагментов генетического материала от микроба-донора микробу-реципиенту (см. врезку и рис. 2).

Что такое митоз

Первый способ деления соматической клетки — митоз. Материнская клетка разделяется на дочерние клетки, которые практически идентичны родительским с точки зрения генетической информации. Наследственная информация и количество хромосом у дочерних клеток такие же, как у родительской.


‍ Схема митоза‍

Митоз — это одна из фаз жизненного цикла клетки и механизм нормального роста тканей. Большую часть клеточного цикла занимает интерфаза, в течение которой протекает повседневная клеточная деятельность. Во время интерфазы происходит: 

  • рост, 
  • синтез белка и других органических веществ клетки, 
  • образование новых органелл.

Во время интерфазы идёт активный синтез и накопление необходимых для деления клетки веществ. Интерфаза делится на три подфазы: 

  • G1 — клетка становится больше, синтезируются белки, образуются одномембранные органоиды и рибосомы, готовясь к делению. В человеческой клетке 46 хромосом. Каждая хромосома, состоящая из одной хроматиды, напоминает неполую макаронину — она достаточно гибкая, чаще всего длина намного превышает ширину. Хроматида представляет собой 1 молекулу ДНК. 
  • S — каждая хроматида копируется. Количество хромосом остаётся неизменным — 46, однако теперь каждая хромосома состоит из двух идентичных сестринских хроматид. Они соединяются в области, которая называется центромерой. В сумме в клетке получается 92 хроматиды.  
  • G2 — продолжается рост клетки и синтез белков, нуклеиновых кислот. 

<<Форма демодоступа>>

После стадии G2 клетка вступает в следующую фазу деления, а именно — сам митоз. Тут есть четыре подфазы: профаза, метафаза, анафаза, телофаза.

В схемах деления гаплоидный набор хромосом обозначают буквой n, а набор молекул ДНК (то есть хроматид) —  буквой с. Перед буквами указывают число гаплоидных наборов: 1n2с — гаплоидный набор удвоенных хромосом, 2n2с — диплоидный набор одиночных хромосом, 2n4с — диплоидный набор удвоенных хромосом.

‍Пример. В клетках человека гаплоидный набор составляют 23 хромосомы. Значит, запись 2n2с означает 46 хромосом и 46 хроматид, а 2n4с — 46 хромосом и 92 хроматиды. 

Рассмотрим подробнее фазы митоза:

  • Профаза (2n4с) — спирализация хромосом, уменьшение их функциональной активности; репликация практически не идёт; разрушение оболочки ядра; образование веретена деления.
  • Метафаза (2n4с) — прикрепление хромосом к нитям веретена деления; спирализация хромосом достигает максимума; хромосомы утрачивают свою функциональную активность, образуют экваториальную (метафазную) пластинку. 
  • Анафаза (4n4c) — деление центромер; расхождение по нитям веретена сестринских хромосом. Анафаза заканчивается, когда центромеры достигают полюсов клетки.
  • Телофаза (2n2c) — деспирализация хромосом; образование ядерной оболочки; деление цитоплазмы; между дочерними клетками на экваторе образуется перетяжка. В растительных и грибных клетках в этом месте начинает закладываться клеточная стенка. 

Многие клетки вступают в фазу G0 после митоза и находятся в ней всю жизнь до гибели. Обычно это высокоспециализированные клетки, которые не могут совмещать эффективное выполнение своих функций и размножение. Например, в фазе G0 находится большинство нейронов головного мозга. 

Биологическое значение митоза — образование генетически одинаковых дочерних клеток с тем же набором хромосом, что был у материнской клетки. Сохраняется преемственность в ряду клеточных поколений. 


‍Как происходит митоз‍

Мейоз I

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).

Конъюгация — процесс сцепления гомологичных хромосом. Кроссинговер — обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма.

Спаренные гомологичные хромосомы называются бивалентами, или тетрадами. Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие — к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: