§ 4.6. стоячие волны

Содержание:

В стоячие волны Это волны, которые распространяются в ограниченной среде, движутся и приходят в части пространства, в отличие от бегущих волн, которые при распространении удаляются от источника, который их породил, и не возвращаются к нему.

Они являются основой звуков, производимых музыкальными инструментами, поскольку легко возникают в закрепленных струнах либо на одном, либо на обоих концах. Они также создаются на плотных мембранах, таких как барабаны, или внутри труб и конструкций, таких как мосты и здания.

Когда у вас есть фиксированная струна на обоих концах, например, у гитары, создаются волны с одинаковой амплитудой и частотой, которые распространяются в противоположных направлениях и объединяются, создавая явление, называемое вмешательство.

Если волны синфазны, пики и впадины выровнены и в результате получается волна с удвоенной амплитудой. В таком случае мы говорим о конструктивном вмешательстве.

Но если мешающие волны не совпадают по фазе, пики одной встречаются с впадинами других, и результирующая амплитуда равна нулю. Тогда речь идет о деструктивном вмешательстве.

Эффект Допплера

Рассмотрим простейшие случаи, когда источник волн и наблюдатель движутся относительно среды вдоль одной прямой:

1. Источник звука движется относительно среды со скоростью , приемник звука покоится.

В этом случае за период колебаний звуковая волна отойдет от источ-ника на расстояние , а сам источник сместится на расстояние равное .

Если источник удалять от приемника, т.е. двигать в направлении обратном направлению распространения волны, то длина волны .

Если источник звука приближать к приемнику, т.е. двигать в направлении распространения волны, то .

Частота звука воспринимаемая приемником равна:

Подставим вместо их значения для обоих случаев:

С учетом того, что , где — частота колебаний источника, равенство примет вид
:

Разделим и числитель и знаменатель этой дроби на , тогда:

2. Источник звука неподвижен, а приемник движется относительно среды со скоростью .

В этом случае длина волны в среде не изменяется и по-прежнему равна . Вместе с тем две последовательные амплитуды, отличающиеся по времени на один период колебаний , дойдя до движущегося приемника, будут отличаться по времени в моменты встречи волны с приемником на отрезок времени , величина которого больше или меньше в зависимости от того, удаляется или приближается приемник к источнику звука. За время звук распространяется на расстояние , а приемник сместится на расстояние . Сумма этих величин и дает нам длину волны :

Период колебаний, воспринимаемых приемником , связан с частотой этих колебаний соотношением:

Подставив вместо его выражение из равенства (1), получим:

Т.к. , где — частота колебаний источника, а , то:

3. Источник и приемник звука движутся относительно среды. Соединяя результаты, полученные в двух предыдущих случаях, получим:

Образование пучностей

Если в некоторой точке в какой-то момент отклонение прямой и обратной волн совпадут, то в этот момент отклонение шнура будет иметь двойную амплитуду. Допустим, это будет максимум. В следующие моменты отклонения и прямой, и отраженной волны в этой точке будет все меньше и меньше, до тех пор, пока до этой точки не дойдут минимумы обоих волн. Поскольку длины волн и скорости распространения одинаковы, то минимумы волн в эту точку придут также одновременно. В результате точка отклонится в сторону минимума на двойную амплитуду волны.

То есть, в шнуре, по которому двигаются две волны в противоположном направлении, будет существовать ряд точек, которые колеблются с двойной амплитудой. Такие точки называются пучностями.

Стоячие волны

С интерференцией, т. е. со сложением волн одинаковой частоты и амплитуды, тесно связаны «стоячие волны».

Звуковая волна, когда встречает на своём пути перпендикулярную твердую поверхность (например, стену), отражается от неё и возвращается по тому же самому пути. Две волны, которые отразились от стены и движутся в противоположные стороны при сложении способны производить так называемые стоячие волны. Они окрашивают звук новыми гармониками (тем самым изменяя тембр звука).

Красным цветом (ноль суммарной амплитуды — противофаза), желтым — сложение волн (усиление звука).

Например, если встать в прямоугольном помещении точно посередине комнаты, то вы можете услышать, как изменился звук (чаще всего в худшую сторону). Кроме этого, если длина волны кратна длине помещения, то фазы у отраженной волны и прямой совпадают. В результате происходит их (сложение) взаимное усиление. А учитывая, что таких отражений от стен в прямоугольном помещение несколько, то происходит многократное усиление громкости звука. Возникает воздушный резонанс.

Стоячие волны очень важны в практике работы со звуком. Так как они окрашивают звук и не позволяют делать сведение проектов качественным. Вы не слышите «чистый» звук. Вот почему акустическое оформление помещения является очень важным этапом в проектирование студии звукозаписи.

Интерференция и принцип суперпозиции

В окружающей среде распространяются зачастую несколько различных звуковых волн (например, гитара и вокал, речь и шум и т. д.). Но каждый звук слуховая система отчётливо различает.

А происходит это благодаря принципу суперпозиции. Звуковые волны, которые проходят через определённую точку среды, создают результирующее колебание, равное геометрической сумме колебаний, вызванных каждой волной в отдельности. То есть молекула воздуха участвует сразу в нескольких колебательных процессах. Например, одна волна смещает её в одну сторону, другая — в противоположную. В итоге молекула останется на месте. Это результат суммы этих колебаний.

Этот принцип сложения волн действует только при малых амплитудах (в линейной среде), и приводит к тому, что звуковые волны распространяются через среду независимо, как бы проходя друг через друга.

В результате создаётся сложное звуковое поле, которое зависит от соотношения амплитуд, частот и фаз составляющих звуковых волн.

Сложение волн от двух и более когеретных (согласованных по времени колебательных процессов, приводящих к созданию одинаковых по направлению, частоте и имеющее сдвиг фаз во времени) источников, при котором образуется устойчивое пространственное распределение амплитуды и фазы результирующей волны, называется интерференцией.

При интерференции, как мы уже поняли, происходит сложение волн. При интерференции двух когеретных гармонических волн образуется устойчивая интерференционная картина. В тех точках, где две пришедшие волны имеют одинаковые амплитуды в одинаковой фазе будет сложение колебаний (образуется максимальная суммарная амплитуда). И наоборот, где встречаются две противоположно направленные образуется ноль суммарной амплитуды.

Можете проделать простой эксперимент. Взять любой звук и поменять в нём фазу. А затем создать в проекте две дорожки. На одной из них будет первый вариант, а на второй с изменённой фазой. При этом оба аудиофайла должны начинаться точно в одно и то же время. Когда вы воспроизведёте этот проект вы ничего не услышите, так как они находятся полностью в противофазе, что и соответствует нулю (отсутствию звука).

Если волны некогерентны и разность фаз между ними быстро и беспорядочно меняется, то интерференционная картина будет размазываться.

Прямые и отраженные волны

Если натянуть длинный шнур и резко двинуть один из его концов в поперечном направлении, то возбужденная волна побежит по шнуру, и ее будет легко наблюдать. Если второй конец шнура закреплен, и общие механические потери невелики, то волна, добежав до закрепленного конца шнура, отразится и начнет движение по шнуру обратно.

Рис. 1. Колебания закрепленного шнура рукой.

Длина отраженной волны будет равна длине прямой волны, амплитуда будет близка к ней (поскольку потери невелики), фаза же будет отличаться.

Действительно, в закрепленном конце сила упругости удерживает шнур в одном положении, поэтому она направлена противоположно отклонению шнура, а значит, она действует на шнур в противофазе относительно прямой волны.

Таким образом, если на одном конце будут возбуждаться гармонические волны, двигающиеся по шнуру, а на другом конце эти волны будут отражаться, то по шнуру будут двигаться одновременно с равной скоростью две волны, имеющие одинаковые длины, одинаковые амплитуды, но разные фазы.

Как происходит их взаимодействие в шнуре ?

Максимальная кинетическая энергия груза на пружине

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине:

Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .

Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени

Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия

Задание 7. Верхний конец пружины идеального пружинного маятника неподвижно закреплён, как показано на рисунке. Масса груза маятника равна m, жёсткость пружины равна k. Груз оттянули вниз на расстояние x от положения равновесия и отпустили с начальной скоростью, равной нулю. Формулы А и Б позволяют рассчитать значения физических величин, характеризующих колебания маятника.

Установите соответствие между формулами и физическими величинами, значение которых можно рассчитать по этим формулам.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

1) амплитуда колебаний скорости

2) циклическая частота колебаний

3) максимальная кинетическая энергия груза

4) период колебаний

А) Имеем пружинный маятник массой m и жесткостью пружины k, тогда период свободных колебаний этого маятника определяется по формуле

Б) Для пружинного маятника известны формулы кинетической энергии

Пру­жин­ный ма­ят­ник, со­сто­я­щий из груза и лёгкой пру­жи­ны, со­вер­ша­ет ко­ле­ба­ния. В мо­мент, когда груз на­хо­дит­ся в край­нем по­ло­же­нии, его не­мно­го под­тал­ки­ва­ют вдоль оси пру­жи­ны в на­прав­ле­нии от по­ло­же­ния

рав­но­ве­сия. Как в ре­зуль­та­те этого из­ме­ня­ют­ся мак­си­маль­ная ки­не­ти­че­ская энер­гия груза ма­ят­ни­ка и ча­сто­та его ко­ле­ба­ний?

Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

3) не из­ме­ня­ет­ся

За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

Мак­си­маль­ная ки­не­ти­че­ская энер­гия груза ма­ят­ни­ка Ча­сто­та ко­ле­ба­ний ма­ят­ни­ка

Груз под­толк­ну­ли от по­ло­же­ния рав­но­ве­сия, от­ку­да сле­ду­ет, что ам­пли­ту­да ко­ле­ба­ний груза уве­ли­чит­ся. При этом уве­ли­чит­ся также и мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны. По за­ко­ну со­хра­не­ния энер­гии, это при­ве­дет к уве­ли­че­нию мак­си­маль­ной ки­не­ти­че­ской энер­гии груза ма­ят­ни­ка.

Пе­ри­од и ча­сто­та пру­жин­но­го ма­ят­ни­ка за­ви­сят толь­ко от массы груза и жест­ко­сти пру­жи­ны. Таким об­ра­зом, при уве­ли­че­нии ам­пли­ту­ды ко­ле­ба­ний груза, ча­сто­та ко­ле­ба­ний ма­ят­ни­ка не из­ме­нит­ся.

Звуковые волны

1. Важным видом продольных волн являются звуковые волны. Так называются волны с частотами 17 – 20000 Гц. Учение о звуке называется акустикой. В акустике изучаются волны, которые распространяются не только в воздухе, но и в любой другой среде. Упругие волны с частотой ниже 17 Гц называются инфразвуком, а с частотой выше 20000 Гц – ультразвуком.

Звуковые волны – упругие колебания, распространяющиеся в виде волнового процесса в газах, жидкостях, твердых телах.

2. Избыточное звуковое давление. Уравнение звуковой волны.

Уравнение упругой волны позволяет вычислить смещение любой точки пространства, по которому проходит волна, в любой момент времени. Но как говорить о смещении частиц воздуха или жидкости от положения равновесия? Звук, распространяясь в жидкости или газе, создает области сжатия и разряжение среды, в которых давление соответственно повышается или понижается по сравнению с давлением невозмущенной среды.

Если — давление и плотность невозмущенной среды (среды, по которой не проходит волна), а — давление и плотность среды при распространении в ней волнового процесса, то величина называется избыточным давлением. Величина есть максимальное значение избыточное давление (амплитуда избыточного давления).

Изменение избыточного давления для плоской звуковой волны (т.е. уравнение плоской звуковой волны) имеет вид:

,

где y – расстояние от источника колебаний точки, избыточное давление в которой мы определяем в момент времени t.

Если ввести величину избыточной плотности и ее амплитуды так же, как мы вводили величину избыточного звукового давления, то уравнение плоской звуковой волны можно было бы записать так: . 3. Объективные и субъективные характеристики звука.

Само слово “звук” отражает два различных, но взаимосвязанных понятия: 1)звук как физическое явление; 2)звук – то восприятие, которое испытывает слуховой аппарат (человеческое ухо) и ощущения, возникающие у него при этом. Соответственно характеристики звука делятся на объективные, которые могут быть измерены физической аппаратурой, и субъективные, определяемые восприятием данного звука человеком.

К объективным (физическим) характеристикам звука относятся характеристики, которые описывают любой волновой процесс: частота, интенсивность и спектральный состав. В таблицу 3 включены сравнительные данные объективных и субъективных характеристик.

Таблица 3.

Субъективные Характеристики Объективные характеристики
Высота звука Высота звука определяется частотой волны
Тембр (окраска звука) Тембр звука определяется его спектром
Громкость (сила звука) Сила звука определяется нтенсивностью волны (или квадратом ее амплитуды)

Остановимся на некоторых определениях.

Частота звука измеряется числом колебаний частиц среды, участвующих в волновом процессе, в 1 секунду.

Интенсивность волны измеряется энергией, переносимой волной в единицу времени через единичную площадь (расположенную перпендикулярно направлению распространению волны).

Спектральный состав (спектр) звука указывает из каких колебаний состоит данный звук и как распределены амплитуды между отдельными его составляющими.

Различают сплошные и линейчатые спектры. Для субъективной оценки громкости используются величины, называемые уровнем силы звука и уровнем громкости. Все акустические величины и их размерности в СИ приведены в приложении.

Образование узлов

Более интересное явление произойдет в точке, между соседними пучностями. Эта точка называется узлом. В узле одна волна опережает пучность на четверть волны, а другая – отстает от нее настолько же.

Если в обоих волнах в пучности в данный момент максимум, то в узле в обоих волнах нулевое отклонение. Тоже самое происходит и в момент, когда в пучности минимум.

Но самое интересное происходит, когда в пучности нулевое отклонение. В этот момент в узле одна волна имеет максимум, а другая – минимум. Волны складываются, и, поскольку их амплитуды равны, в узле амплитуда опять равна нулю.

Таким образом, амплитуда колебаний в узле равна нулю в любой момент времени.

Рис. 2. Узлы и пучности стоячей волны.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​\( \nu \)​ < 16 Гц);
  • звуковой диапазон (16 Гц < \( \nu \) < 20 000 Гц);
  • ультразвук (\( \nu \) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.Шум – хаотическая смесь тонов.

Ссылки[править | править код]

  1. Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. — М.: Гос. издат. ф.— м. лит-ры, 1959, с. 144.
  2. http://en.wikipedia.org/wiki/Wave
  3. http://bse.sci-lib.com/article012647.html
  4. Paul R Pinet. op. cit.. p. 242. ISBN 0763759937. http://books.google.com/books?id=6TCm8Xy-sLUC&pg=PA242.
  5. Paul R Pinet. op. cit.. p. 242. ISBN 0763759937. http://books.google.com/books?id=6TCm8Xy-sLUC&pg=PA242.
  6. Mischa Schwartz, William R. Bennett, and Seymour Stein (1995). Communication Systems and Techniques. John Wiley and Sons. p. 208. ISBN 9780780347151. http://books.google.com/books?id=oRSHWmaiZwUC&pg=PA208&dq=sine+wave+medium++linear+time-invariant&lr=&as_brr=3&ei=u69cSpuKNZDKkASph-GaBw.
  7. See Eq. 5.10 and discussion in A. G. G. M. Tielens (2005). The physics and chemistry of the interstellar medium. Cambridge University Press. pp. 119 ff. ISBN 0521826349. http://books.google.com/books?id=wMnvg681JXMC&pg=PA119. ; Eq. 6.36 and associated discussion in Otfried Madelung (1996). Introduction to solid-state theory (3rd ed.). Springer. pp. 261 ff. ISBN 354060443X. http://books.google.com/books?id=yK_J-3_p8_oC&pg=PA261. ; and Eq. 3.5 in F Mainardi (1996). «Transient waves in linear viscoelastic media». in Ardéshir Guran, A. Bostrom, Herbert Überall, O. Leroy. Acoustic Interactions with Submerged Elastic Structures: Nondestructive testing, acoustic wave propagation and scattering. World Scientific. p. 134. ISBN 9810242719. http://books.google.com/books?id=UfSk45nCVKMC&pg=PA134.
  8. Aleksandr Tikhonovich Filippov (2000). The versatile soliton. Springer. p. 106. ISBN 0817636358. http://books.google.com/books?id=TC4MCYBSJJcC&pg=PA106.
  9. Seth Stein, Michael E. Wysession (2003). An introduction to seismology, earthquakes, and earth structure. Wiley-Blackwell. p. 31. ISBN 0865420785. http://books.google.com/books?id=Kf8fyvRd280C&pg=PA31.
  10. Michael A. Slawinski, Klause Helbig (2003). «Wave equations». Seismic waves and rays in elastic media. Elsevier. pp. 131 ff. ISBN 0080439306. http://books.google.com/books?id=s7bp6ezoRhcC&pg=PA134.
  11. Jalal M. Ihsan Shatah, Michael Struwe (2000). «The linear wave equation». Geometric wave equations. American Mathematical Society Bookstore. pp. 37 ff. ISBN 0821827499. http://books.google.com/books?id=zsasG2axbSoC&pg=PA37.
  12. Karl F Graaf (1991). Wave motion in elastic solids (Reprint of Oxford 1975 ed.). Dover. pp. 13‒14. http://books.google.com/books?id=5cZFRwLuhdQC&printsec=frontcover.
  13. Christian Jirauschek (2005). FEW-cycle Laser Dynamics and Carrier-envelope Phase Detection. Cuvillier Verlag. p. 9. ISBN 3865374190
  14. Fritz Kurt Kneubühl (1997). Oscillations and waves. Springer. p. 365. ISBN 354062001X
  15. Mark Lundstrom (2000). Fundamentals of carrier transport. Cambridge University Press. p. 33. ISBN 0521631343
  16. Chin-Lin Chen (2006). «§ 13.7.3 Pulse envelope in nondispersive media». Foundations for guided-wave optics. Wiley. p. 363. ISBN 0471756873. http://books.google.com/books?id=LxzWPskhns0C&pg=PA363.
  17. Chin-Lin Chen (2006). «§ 13.7.3 Pulse envelope in nondispersive media». Foundations for guided-wave optics. Wiley. p. 363. ISBN 0471756873. http://books.google.com/books?id=LxzWPskhns0C&pg=PA363.
  18. Stefano Longhi, Davide Janner (2008). «Localization and Wannier wave packets in photonic crystals». in Hugo E. Hernández-Figueroa, Michel Zamboni-Rached, Erasmo Recami. Localized Waves. Wiley-Interscience. p. 329. ISBN 0470108851. http://books.google.com/books?id=xxbXgL967PwC&pg=PA329.

Эффект Допплера

Рассмотрим простейшие случаи, когда источник волн и наблюдатель движутся относительно среды вдоль одной прямой:

1. Источник звука движется относительно среды со скоростью , приемник звука покоится.

В этом случае за период колебаний звуковая волна отойдет от источ-ника на расстояние , а сам источник сместится на расстояние равное .

Если источник удалять от приемника, т.е. двигать в направлении обратном направлению распространения волны, то длина волны .

Если источник звука приближать к приемнику, т.е. двигать в направлении распространения волны, то .

Частота звука воспринимаемая приемником равна:

Подставим вместо их значения для обоих случаев:

С учетом того, что , где — частота колебаний источника, равенство примет вид
:

Разделим и числитель и знаменатель этой дроби на , тогда:

2. Источник звука неподвижен, а приемник движется относительно среды со скоростью .

В этом случае длина волны в среде не изменяется и по-прежнему равна . Вместе с тем две последовательные амплитуды, отличающиеся по времени на один период колебаний , дойдя до движущегося приемника, будут отличаться по времени в моменты встречи волны с приемником на отрезок времени , величина которого больше или меньше в зависимости от того, удаляется или приближается приемник к источнику звука. За время звук распространяется на расстояние , а приемник сместится на расстояние . Сумма этих величин и дает нам длину волны :

Период колебаний, воспринимаемых приемником , связан с частотой этих колебаний соотношением:

Подставив вместо его выражение из равенства (1), получим:

Т.к. , где — частота колебаний источника, а , то:

3. Источник и приемник звука движутся относительно среды. Соединяя результаты, полученные в двух предыдущих случаях, получим:

Биения

Это периодические изменения амплитуды колебания, которые происходят при сложении двух гармонических колебаний с близкими частотами.

Например, 400 и 402 Гц. Эти два сигнала будут восприниматься нашей слуховой системой как единый сигнал с частотой равной среднему значению этих двух частот и изменением амплитуды равной разности частот. Кстати, предел в котором мы воспринимаем два сигнала как один равен 15 Гц и меньше.

Биения очень важны при записи свободно интонирующих инструментов (скрипка, вокал, тромбон и т.п.). Если в сумме много нечистых тонов, то эта грязь уёдет вверх (инфразвук) — может колебаться уровень громкости, который будет периодически уходить в «пик» (красную зону), хотя громкость не будет очень высокой. А также часть уйдет вниз, что дополнительно будет перегружать низ (например, может звучать полная каша, если бочка и бас не строят между собой).

Биения при прослушивании в концертном зале не так сильно заметны, как при записи в студии. Поэтому проверяйте строй музыкальных инструментов при их записи.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: