Столкновение Млечного пути и Андромеды
Млечный путь не только вращается. Любой космический объект во Вселенной движется по собственной заданной траектории. Согласно расчетам, примерно через 4 миллиарда лет наш космический дом столкнется с туманностью Андромеды. Оба объекта сближаются со скоростью 120 км/с. Интересно, что для наблюдателя из этой галактики Земля находилась бы в созвездии Малого Пса.
Проявления самого столкновения будут происходить медленно и неизвестно смогут ли быть замечены земными наблюдателями. Практически исключено любое непосредственное воздействие этого космического события на Солнце.
Так через 4 миллиарда лет может выглядеть с Земли слияние Андромеды и Млечного Пути
Вероятно, что Солнечная система может быть целиком отброшена из новообразованной галактики. Так она станет межгалактическим объектом. Для Солнечной системы это не вызовет никаких негативных моментов. Разве что для земного наблюдателя поменяется звездное небо: оно не будет таким красивым. Изменятся и созвездия Млечного Пути. Не будет никаких последствий и для всего живого, ведь от космического излучения хорошо защищает земная атмосфера. Для жизни гораздо более важна эволюция Солнца.
Расширяющаяся вселенная
Расширяющуюся Вселенную можно
представить себе в виде поверхности шара, внутрь
которого накачивается воздух и который,
следовательно, увеличивается в размерах.
Скопления галактик заменены белыми точками. При
расширении шара размеры между точками
увеличиваются. Если вообразить себя «стоящим» на
одном белом пятнышке, смотрящем на другие, то
станет понятно, что соседние пятна удаляются
равномерно по всем направлениям. И чем дальше
сосед, тем быстрее он это делает. Причем подобная
картина видна с любого белого пятнышка, иными
словами, можно считать, что центр Вселенной
находится в каждой ее точке или (что в принципе то
же самое) что центра у Вселенной нет вообще!
Структура и состав Млечного пути
Ядро состоит из миллиардов звёзд. Предположительно в его центре расположена чёрная дыра. В самом центре ядра расположен балдж. Он представляет собой яркую сфероидальную часть, состоящую из плотного звёздного скопления. Размер балджа варьируется от сотен парсек до нескольких килопарсек.
Парсек
Перемычка имеет протяжённость примерно 27 тысяч световых лет. Как известно, проходит она через центр галактики. Притом приблизительно под углом 44 градуса по отношению к границе между Солнцем и самим центром.
В состав Диска входят звёзды, созвездия, газ и пыль. Примерный размер диаметра диска равен 100 тысячам световых лет. Однако, скорость движения в диске неравномерна, в зависимости от расстояния от ядра. В районе диска располагаются газовые облака и молодые созвездия.
Корона Млечного пути (гало) имеет в своём составе шаровые скопления, звёзды и созвездия. Также здесь находятся карликовые галактики и большое количество горячего газа. Что интересно, движение объектов короны вокруг ядра происходит по вытянутым орбитам. Притом, их скорость может быть разной. В конце концов, вращение получается медленным. Форма короны сферическая. А её возраст практически равен возрасту Млечного пути.
Корона Млечного пути
Газовое кольцо находится между центром галактики и его рукавами. Содержит в себе огромную концентрацию пыли и газа. На самом деле, в нём происходит активное образование звёзд.
Спиральные рукава расположены в плоскости диска. А он в свою очередь, находится в короне. У Млечного пути выделено пять основных рукавов:
- Лебедя;
- Персея;
- Ориона;
- Стрельца;
- Центавра.
Солнце находится в рукаве Ориона. Точнее с его внутренней стороны. Помимо этого, оно находится ближе к району диска. Примерно на расстоянии 27 тысяч световых лет от ядра. Скорость движения Солнца очень велика. Ориентировочно она составляет 250 км в секунду. К тому же, происходит движение вокруг галактического центра. Для того, чтобы совершить полный оборот по всей галактике, необходимо приблизительно 240 миллионов лет.
Что больше, Вселенная или галактика?
Следует знать, что наша галактика, несмотря на ее размеры, не одинока во Вселенной. Сегодня ученым-астрономам достоверно известно о более чем ста других галактиках.
Некоторые из них расположены сравнительно близко от нашей и могут быть различимы даже невооруженным глазом, как, например, галактика в созвездии Волосы Вероники. Другие можно увидеть только в мощный телескоп обсерватории. Третьи различимы только с орбитальной станции, где атмосфера не препятствует наблюдению за космосом.
Вселенная, согласно представлениям ученых, бесконечна, и в ней находится бесконечное число галактик. Одни рождаются из облаков раскаленного газа и пыли, другие находятся в таком же состоянии, как и наш Млечный путь, третьи угасают, исчерпав свою энергию. До сих пор нет единой теории, объясняющей происхождение Вселенной и образование в ней звезд и галактик. Возможно, в отдаленном будущем человечество будет обладать этими знаниями, но пока мы можем только строить об этом самые фантастические догадки.
Вселенная Фридмана
Фридман допускал, что Вселенная имеет совершенно одинаковый вид во всех направлениях и данное условие характерно для всех ее точек. Исходя из этого и учитывая общую теорию относительности, ученый дал понять, что не стоит ожидать от Вселенной стационарности.
Если посмотреть на небосвод, можно увидеть светящуюся полосу – нашу Галактику Млечный путь. Сфокусировав свой взгляд на более отдаленных галактических системах, видно, что в разных частях космического пространства их число будет примерно одинаковым. Исходя из этого, можно говорить об относительной однородности Вселенной.
Модель Вселенной Фридмана была одной из самых удачных. Кроме того, она соответствовала наблюдениям Хаббла. Однако в западных странах о ней услышали только в 1935 г, после того, как подобные модели были разработаны Говардом Робертсоном и Артуром Уокером. Несмотря на то, что Вселенная Фридмана имела только одну модель, на ее основе можно построить еще три других:
- расширение Вселенной по Фридману настолько медленное, что силы притяжения между галактическими пространствами еще сильнее замедляют его, а со временем вообще останавливают. После этого галактики устремляются навстречу друг к другу, то есть запускается процесс сжатия космического пространства.Расширяющая Вселенная Фридмана достигает определенного максимума, а потом начинает снова возвращаться в начальную точку;
- вторая космологическая модель Вселенной Фридмана гласит, что расширение космического пространства происходит с незначительной скоростью. Ее хватает лишь для того, чтобы не начался обратный процесс сжатия. В данном предположении расширение начинается с начальной точки, но при этом оно всегда растет. Скорость процесса замедляется, но никогда не останавливается;
- расширение космического пространства происходит с огромной скоростью. Она настолько велика, что гравитационные силы никогда не смогут остановить данный процесс, разве что только слегка замедлить его. Разделение галактик начинается также с определенного нулевого расстояния.
Анализируя все вышесказанное, можно сделать вывод: модель Фридмана рассказывает, что Вселенная не бесконечна в космическом пространстве, но само пространство безгранично. В результате сильных гравитационных сил, пространство искривляется и замыкается, то есть напоминает чем-то сферическую форму Земного шара. Если человек путешествует по поверхности планеты в одном и том же направлении, он никогда не встретит препятствие, которое не смог бы преодолеть, кроме того, он никогда не упадет «с края Земли». Рано или поздно он просто вернется в точку, с которой начинал свое путешествие. Примерно такое же пространство изображено в модели нестационарной Вселенной Фридмана.
Гало
Гало, а простыми словами сферическая форма, которая окутывает диск Млечного пути. Она состоит в основном из звезд и скоплений, которым уже много тысяч лет.
Учеными было выявлено предположение, что Гало образовалось 12 миллиардов лет назад. Данные выводы сделаны после исследований нескольких весьма старых объектов.
К слову, все объекты в гало вращаются по орбитам. Происходит это за счет влияния диска на гало. Гало считается полностью сформированной структурой. Здесь не появляются новых звезд, ведь нет и предпосылок для них. И если в диске имеются пыль, газы, из которых образовываются новые звезды, то в гало этого нет.
Ядро
Давайте более подробно рассмотрим ядро. Ученые предполагают, что оно состоит из черной дыры, которую еще не успели полностью изучить. Вокруг нее расположились звезды, которые заставляют черную дыру светится. Отсюда и происходит этот яркий свет ядра. После ядра идет перемычка.
Это не просто пустое место, тут находятся “красные” звезды. Им уже много миллиардов лет, поэтому и света они издают очень мало. Не так давно, на расстоянии 200 световых лет от черной дыры, ученые обнаружили новую.
А чуть позже были обнаружены еще 12 систем, где могут находиться черные дыры. К сожалению, данные объекты не исследованы настолько хорошо, но нам остается лишь догадываться.
Трехмерный балет
Орбита нашей звездной системы вокруг центра Млечного Пути не является идеальным кругом или эллипсом. Поскольку наша Галактика имеет весьма сложный «ландшафт». Он состоит из неравномерных концентраций масс и сложных гравитационных полей. К тому же, ни один из компонентов нашей Галактики не является стационарным. Они тоже вращаются и дрейфуют в неком «трехмерном балете». В результате этого движения наша Солнечная система, как и миллиарды других звездных систем, неизбежно должна проходить через разные участки межзвездного пространства. Некоторые из них содержат достаточно плотные газовые облака. Другие – микроскопические пылинки. Чтобы пройти через одну из таких областей, звездной системе требуется от десятков тысяч до сотен тысяч лет.
Считается, что Солнечная система совершила около 20–25 витков вокруг центра Галактики за время своего существования. Или 0,0008 витка с момента появления человека. Последние угли нашего Солнца рано или поздно потускнеют и окончательно погаснут. Это случится через миллиарды лет. К этому моменту Солнечная система будет иметь возраст 60 галактических лет.
Солнечная система, к тому же, не летит точно в плоскости галактики. А колеблется вверх и вниз относительно плоскости галактического диска. За время одного полного оборота Солнце и окружающие его планеты преодолевают три такие «волны». В настоящее время Солнце расположено на расстоянии 56 световых лет относительно галактической плоскости. И это далеко не предел. Потому что иногда это значение достигает 300 световых лет и более. Чтобы изменить свое положение между самой верхней и самой нижней точкой орбиты, Солнцу нужно около 80 миллионов лет.
История вопроса
Звездное небо испокон веков привлекало человечество. Но из-за того, что прогресс не очень торопился, многие открытия были неполными.
Так, даже те галактики, что можно наблюдать в телескоп, считались просто туманностями, из которых впоследствии могла образоваться звездная система.
Млечный путь считался метагалактикой – единственной галактикой, что простирается на всю Вселенную.
До середины 19 века такое мнение было единственно верным, пока Уильям Парсон не построил телескоп, длинной два метра. Тогда он смог увидеть спиралевидные галактики и доказать, что это именно галактики, а не просто туманности.
Но до 20 века это наблюдение оставалось лишь красивым предположением, ведь для ученого заключения требуются факты и доказательства.
Тогда интерес всего мира приковала к себе галактика Андромеда – наша ближайшая соседка. Было сделано невероятно количество снимкой Андромеды, доказывающих что это именно галактика с ядром и рукавами.
Первое фото Андромеды 1888 год
В первой половине 20 века Эдвин Хаббл впервые оценил расстояние до объекта за пределами Млечного пути и получил результат в три раза меньше реального. Но даже он доказывал, что Андромеда не может принадлежать Млечному пути и является отдельным космическим объектом. Так же Хаббл различил отдельные звезды, что напрямую доказывало статус галактики, а не просто туманности.
После этого астрономы начали пересматривать обозначенные до этого «туманности», открывая галактики.
Краткая история вселенной
По горизонтальной оси отложено время,
измеряемое миллиардами лет. После Большого
Взрыва (самая левая желтая полоса) вся среда
оказалась очень горячей, ее температура была
порядка 100 млрд. Кельвин. Затем, в процессе
расширения, Вселенная быстро охладилась (темная
полоса) и менее чем через миллиард лет зажглись
первые звезды. А в интервале от 2 до 5 млрд. лет
образовались скопления звезд и галактики. В
дальнейшем большинство старых звезд взорвалось,
оставив после себя тяжелые элементы, которые
служат материалом для новых звезд, одной из
которых является Солнце. Самая правая черточка
на диаграмме показывает время появления
человека.
Пунктирной линией изображены совсем недавние
представления ученых об образовании звезд. Еще
десяток лет назад считалось, что образуются они в
основном через 5 млрд. лет после Большого Взрыва,
но последние открытия звезд и галактик на
сверхбольших расстояниях изменили точку зрения
ученых.
Апоп
Какие формы только не встречабтся во Вселенной.
В 2018 году астрономы заявили о наличии в нашей галактике уникальной системы. Она расположена в созвездии Наугольника и представляет собой тройную звездную систему, состоящую из двух звезд Вольфа-Райе и сверхгиганта. Научное название — 2XMM J160050.7–514245. Для просты ее прозвали Апоп. Название происходит из имени божества из египетской мифологии — огромного змея, олицетворяющего зло и Хаос, извечного врага бога солнца Ра. Уникальной ее делает то, что согласно нашим теориям должно произойти после ее звездного коллапса.
Когда звезды класса Вольфа-Райе погибают, они превращаются в сверхновые и создают очень мощные гамма-выбросы. Последнее является наиболее мощным явлением излучения энергетически заряженных частиц в известной нам Вселенной и никогда ранее не наблюдалось внутри Млечного Пути. Такие всплески происходят очень редко, но Апоп подает весомые надежды.
Визуально Апоп определяется как две звезды, но нижняя более крупная звезда на самом деле является двойной звездой Вольфа — Райе, состоящей из двух звезд, расположенных очень близко друг к другу. Третья звезда вращается вокруг двойной звезды на расстоянии около 1700 астрономических единиц (250 млрд. км) с периодом обращения, превышающим 10 тысяч лет. Система окружена облаками из звездного ветра и космической пыли. Скорость ветра здесь достигает 12 000 000 км/ч, а скорость вращения космической пыли составляет 2 000 000 км/ч.
Звезды Вольфа — Райе с быстрым вращением теоретически могут породить гамма-всплеск в ходе взрыва сверхновой. Звездная система 2XMM J160050.7–514245 подходит под это описание и может породить выброс двух гамма-джетов из своих полюсов. Потенциальный гамма-всплеск из данной системы не опасен для жизни на Земле, поскольку угол отклонения оси вращения звездной системы по отношению к Земле составляет примерно 30 градусов. Но зрелище будет незабываемым.
Структура и состав Млечного Пути
Даже по приближенным расчетам, в нашей галактике не менее 200 миллиардов звезд. Преимущественное большинство их локализовано в зоне с формой сплющенного диска.
Ядро
В центральной части Галактики есть утолщенная зона – балдж. Его диаметр – 8 тысяч парсек, он представляет собой звездное скопление эллипсоидной формы. Середина ядра расположена в созвездии Стрельца. Солнце удалено от него примерно на 8500 парсек, или 27,7 тыс. св. лет, или же на 262 квадриллиона километров.
По-видимому, в рассматриваемой зоне находится огромная черная дыра. Ее масса в 4 млн раз больше массы Солнца. Вокруг нее обращается еще один подобный массивный объект, тяжелее солнца в 1000 – 10000 раз, а также несколько тысяч черных дыр помельче, с периодом вращения около сотни лет. Воздействие гравитации от этого центра заставляет близко расположенные от центра звезды вращаться по особым орбитам. Астрономы допускают, что практически все звездные скопления во Вселенной обращаются вокруг черных дыр.
Ядро Млечного Пути. Это самая богатая туманностями, звездными скоплениями, пылью и газом область нашей галактики.
В рассматриваемых участках Млечного Пути сконцентрировано много звезд. Например, только в одном кубическом парсеке этой области их находится несколько тысяч. Масса галактики распределяется так, что скорость обращения на орбите светил не зависит от того, насколько они удалены от центра. Обычная скорость обращения космических объектов здесь доходит до 240 км/с.
Исследования структуры Млечного пути продолжаются, и, по-видимому, ученые удивят нас новыми открытиями.
Перемычка
Длина этой части Галактики примерно 27 тыс. св. лет. Этот объект проходит сквозь ее центр под углом 44° относительно границе между Солнцем и центром. Здесь наблюдаются в основном «красные» звезды. Их возраст значительно больше солнечного. Вокруг перемычки находится «Кольцо в пять килопарсек». В нем преобладает молекулярный водород, который является источником образования звезд.
В конце ХХ в. ученые предположили, что Млечный путь – это спиралеподобная галактика, имеющая перемычку. В 2005 г. с использованием мощного телескопа эта гипотеза подтвердилась. Более того, было установлено, что перемычка имеет значительно больший диаметр, нежели это считалось раньше.
Диск
Диаметр диска Галактики – примерно 100 тыс. св. лет. Он вращается намного быстрее, чем гало, и, причем, на разных скоростях. Вблизи черной дыры она приближается к нулю, а вот на удалении примерно 2 тыс. световых лет возрастает до 240 км/с. Затем скорость немного уменьшается, а затем увеличивается до указанного уровня и остается неизменной. Масса галактического диска в 150 миллиардов раз больше массы Солнца.
Вблизи диска находятся молодые звезды (возраст таких объектов не более нескольких миллиардов лет). Молодые космические тела образуют плоскую составляющую, среди них много объектов с высокой температурой. Вблизи плоскости диска находится основное количество газа в виде газовых облаков. Небольшие облака имеют диаметр около одного парсека. Гигантские газовые объекты располагаются во вселенском пространстве на протяжении тысяч световых лет.
Спиральные рукава
Поскольку Млечный Путь относится к спиралевидным звездным скоплениям, у нее есть рукава. Они располагаются в плоскости диска. Сам же диск находится в короне. Существуют такие рукава:
- Лебедя;
- Персея;
- Ориона;
- Стрельца;
- Центавра.
С внутренней стороны рукава Ориона размещено Солнце. Оно вращается вокруг ядра со скоростью – примерно 230 км/с. Один оборот вокруг центра галактики Солнце делает примерно за 240 миллионов лет.
Спиральные рукава галактики Млечный Путь
Гало
Эта часть имеет форму шара и выходит за его границы примерно на 5 – 10 световых лет. Температура гало – 500 тысяч градусов Кельвина. В его составе – старые, малые, малояркие звезды, а также шаровые скопления. Подавляющее большинство таких скоплений расположены ближе 100 тысяч от центра Млечного Пути, но некоторые шаровые скопления находятся на расстоянии более 200 тысяч световых лет от галактического центра. Центр симметрии гало полностью совпадает с центром диска Галактики.
Звезды в этой области могут встречаться как одиночные, так и в составе скоплений, по несколько миллионов каждое. Их возраст обычно превышает 12 млрд. лет. Здесь процессы звездообразования завершились и в основном встречается темная материя.
Галактическое гало
Объекты, входящие в гало, движутся по весьма вытянутым орбитам. В целом эта область вращается медленно. Отдельные звезды имеют и вовсе хаотичное движение.
Объем Юпитера в 1300 раз больше объема Земли
фото: NASA/Wikimedia Commons
Но не нужно лететь очень далеко, чтобы понять, насколько ничтожна Земля. Юпитер — самая большая планета в Солнечной системе — имеет объем в 1300 раз больше , чем у нашей планеты. А еще на Юпитере бушует буря, известная как Большое красное пятно, которое в 2-3 раза больше нашей планеты!
Тем не менее Юпитер — ничто по сравнению с Солнцем, которое более чем в 1000000 раз больше Земли и составляет от 99,8 до 99,9% массы всей Солнечной системы. Каждое утро, когда встает солнце, вспоминайте о масштабах этого небесного объекта, который, между прочим, по сравнению с некоторыми другими известными звездами сам не представляет собой ничего особенного…
Факты о Вселенной, которые кажутся фейком, но на самом деле на 100% правдивы
Поиск способов представить точные размеры Вселенной — занятие заведомо провальное, да и просто скажем — откровенно глупое. Но невероятные пространства окружающей нас черноты вовсе не означают, что попытки познания космоса проводить не нужно. Еще как нужно!
Знать объемы Вселенной, хотя бы очень и очень приблизительные, полезно даже обычному человеку, а не астрофизику или астрономам. Ведь все познается в сравнении, и это, во-первых, полезно для саморазвития, а во-вторых — просто интересно. Ведь кто бы мог подумать, что такие чудеса могут происходить в мире?!
Имея дело с порядками огромных и невероятно больших чисел, которые определяют Вселенную, легко потеряться в абстрактности, но не понять конкретных масштабов. Чтобы настроиться на нужный лад, можно провести один практический эксперимент. Ответьте на вопрос: сколько дней составляет 1 000 000 секунд? Ответ будет следующий: 11.5 дней. Теперь немного проще понять значение этого относительного числа на рельном временном отрезке.
Что ж, теперь вы готовы к восприятию 12 нестандартных фактов о размерах Вселенной .
Структура
- Ядро. Обычно подразумеваются активные ядра в самом центре. В ядрах галактик живут огромные чёрные дыры.
- Диск. В этом тонком слое сконцентрировано наибольшее количество галактических объектов (звезд, газа, пыли).
- Балдж. Это яркая внутренняя часть в центре. Буквально означает «вздутие».
- Гало. Это название внешнего сфероидального компонента. Между ним и балджем нет чёткой границы.
- Спиральный рукав. Представляет собой плотную структуру, в состав которой входят молодые звёзды и межзвёздный газ.
- Бар. Перемычка в виде плотного вытянутого образования. Состоит из межзвёздного газа и звёзд.
Загадочный сигнал
Галактика чертовски большая штука.
Ученые уже долгое время спорят о том, что вызывает массовые выбросы гамма-излучения из галактического центра Млечного Пути – так называемой галактической выпуклости. Согласно большинству предположений, источником этих выбросов может быть темная материя. Выбросы якобы связаны с тем, что частицы темного вещества (WIMP) натыкаются друг на друга или с обычным веществом. На это действительно намекают некоторые полученные данные. Например, сглаженность сигналов, которую ученые ожидали бы от темной материи.
Однако в 2018 году международная группа исследователей обнаружила доказательства того, что за выбросы гамма-излучения отвечает не темная материя, тип звездообразования вблизи центра Млечного Пути.
В качестве основы для исследования были взяты данные с космического телескопа Ферми. Исследователи увидели, что гамма-лучи фактически отражают распределение звезд вблизи центра галактики — они формируются в форме X, а не сферы, как можно было бы ожидать, если бы это было вызвано взаимодействиями темной материи. Создав модель для воссоздания происходящих процессов, команда обнаружила, что более вероятным объяснением была бы коллекция миллисекундных пульсаров (быстро вращающихся нейтронных звезд) — их объединенные излучения, похоже, слились, чтобы создать сигнал, который первоначально был отнесен к темной материи.
Будущее Вселенной
Вопрос о том, что ждет Вселенную в будущем, является одним из самых популярных среди ученых-космологов. Одно из важнейших свойств Вселенной – это ее ускоренное расширение. Исходя из этого, в дальнейшем развитии космического пространства может быть два сценария:
- расширение Вселенной будет продолжаться бесконечно, что приведет к снижению средней плотности вещества, которая рано или поздно приблизится к нулю. Простыми словами, в начале начнут распадаться галактические скопления, а в конце протоны поделятся на кварки;
- рано или поздно расширение Вселенной замедлится и запустится обратный процесс – сжатие. В результате произойдет коллапс и все космическое вещество вернется в свое первоначальное состояние – сингулярность.
Есть еще одно предположение, что в результате стремительного роста скорости расширения Вселенной, произойдет Большой разрыв – данный процесс подразумевает разрыв абсолютно всех существующих космических структур и даже мельчайших атомов.
Исследование Вселенной – процесс интересный и увлекательный. Ежедневно ученые пытаются объяснить новые явления и процессы, строят математические и космические модели структур и объектов, ищут ответы на самые таинственные загадки. Все эти знания позволяют узнать прошлое мироздания и предсказать его возможное будущее.
Аннотация
Распределение плотности галактик во Вселенной и, следовательно, общее число галактик является фундаментальным
вопросом астрофизики влияющим на разрешение множества проблем в области космологии
Однако, до публикации данной
статьи, никогда
не было
аналогичного подробного исследования этого важного показателя, а также определения четкого алгоритма нахождения
данного числа. Для решения этой задачи мы использовали наблюдаемые галактические функции звездных масс до $z \sim
8$, чтобы
определить,
как изменяется плотность числа галактик в зависимости от функции времени и предела массы
Мы показали, что
увеличение общей плотности галактик ($\phi_T$), более массивных, чем $M_* = 10^6M_\odot$, уменьшается как $\phi_T
\sim t^{-1}$, где t
– возраст Вселенной. Далее мы показали, что этот тренд разворачивается и скорее возрастает со временем при
более высоких предельных значениях массы $M_* > 10^7M_\odot$. Используя $M_* = 10^6M_\odot$ как нижний предел,
мы обосновали,
что общее количество галактик во Вселенной до $z = 8$ равно: $2.0 {+0.7\choose -0.6} \times {10^{12}}$ или
просто $2.0 \times {10^{12}}$ (два триллиона!), т.е. почти в десять раз больше, чем было видно во всех
исследованиях неба на
основе
Hubble Ultra-Deep Field. Мы
обсудим влияние этих результатов для понимание процесса эволюции
галактик,
а также сравним наши результаты с новейшими моделями формирования галактик. Эти результаты также показывают, что
космический фоновый свет
в оптической и ближней инфракрасной области, вероятно, возникает из этих ненаблюдаемых слабых галактик. Мы также
покажем, как эти результаты решают вопрос о том, почему ночное небо темное, иначе известный как
парадокс Ольберса.