Понятие о напряжениях. нормальные и касательные напряжения

Разность потенциалов

Если две точки обладают определённым потенциалом, и если они не равны, то говорят о том, что между двумя точками существует разность потенциалов. Разность потенциалов возникает между точками:

  • потенциал которых определяется зарядами разных знаков;
  • точкой с потенциалом от заряда любого знака и точкой с нулевым потенциалом;
  • точками, имеющими потенциал равного знака, но отличающимися по модулю.

То есть, разность потенциалов не зависит от выбора системы координат. Можно провести аналогию с бассейнами с водой, расположенными на разной высоте относительно нулевой отметки (например, уровня моря).

Вода каждого бассейна имеет определенную потенциальную энергию, но если соединить два любых бассейна трубкой, то в каждой из них возникнет поток воды, расход которой определяется не только размерами трубки, но и разностью потенциальных энергий в гравитационном поле Земли (то есть, разностью высот). Абсолютное значение потенциальных энергий значения в данном случае не имеет.

Точно так же, если соединить проводником две точки с разным потенциалом, по нему потечёт электрический ток, определяемый не только сопротивлением проводника, но и разностью потенциалов (но не их абсолютным значением). Продолжая аналогию с водой, можно сказать, что вода в верхнем бассейне скоро закончится, и если не найдется той силы, которая переместит воду обратно наверх (например, насоса), то и поток очень быстро прекратится.

Так и в электрической цепи – чтобы поддерживать разность потенциалов на определенном уровне, потребуется сила, переносящая заряды (точнее, носители зарядов) к точке с наибольшим потенциалом. Такая сила называется электродвижущей силой и сокращенно обозначается ЭДС. ЭДС может носить различную природу – электрохимическую, электромагнитную и т.п.

На практике имеет значение в основном разность потенциалов между начальной и конечной точками траектории движения носителей зарядов. В этом случае эту разность называют напряжением, и оно в СИ также измеряется в вольтах. О напряжении в 1 Вольт можно говорить, если поле совершает работу в 1 Джоуль при перемещении заряда в 1 Кулон из одной точки в другую, то есть 1В=1Дж/1Кл, и Дж/Кл также может являться единицей измерения разности потенциалов.

Эдс, разность потенциалов и напряжение

Электродвижущая
сила
 (ЭДС) —
скалярная физическая
величина,
характеризующая работу сторонних (н
епотенциальных) сил висточниках постоянного
или переменного тока. В замкнутом
проводящем контуре ЭДС равна работе этих
сил по перемещению единичного
положительного заряда вдоль
контура.

ЭДС
можно выразить через напряжённость
электрического поля сторонних
сил ().
В замкнутом контуре ()
тогда ЭДС будет равна:

,
где —
элемент длины контура.

Причиной
электродвижущей силы может стать
изменение магнитного
поля в
окружающем пространстве. Это явление
называетсяэлектромагнитной
индукцией.
Величина ЭДС индукции в контуре
определяется выражением

где — поток
магнитного поля через
замкнутую поверхность ,
ограниченную контуром. Знак «−» перед
выражением показывает, что индукционный
ток, созданный ЭДС индукции, препятствует
изменению магнитного потока в контуре
(см. правило
Ленца).

Если поле
непотенциально, то напряжение зависит
от того пути, по которому перемещается
заряд между точками. Непотенциальные
силы, называются сторонними, действуют
внутри любого источника постоянного
тока (генератора, аккумулятора,
гальванического элемента и др.).

Под
напряжением на зажимах источника тока
всегда понимают работу электрического
поля по перемещению единичного
положительного заряда вдоль пути,
лежащего вне источника; в этом случае
Э. н. равно разности потенциалов на
зажимах источника и определяется законом
Ома: U = IR—E, где I — сила тока, R — внутреннее
сопротивление источника, а E — его
электродвижущая сила (эдс).

При разомкнутой
цепи (I = 0) напряжение по модулю равно
эдс источника. Поэтому эдс источника
часто определяют как Э. н. на его зажимах
при разомкнутой цепи.

В случае переменного
тока Э. н. обычно характеризуется
действующим (эффективным) значением,
которое представляет собой среднеквадратичное
за период значение напряжения.

Напряжение
на зажимах источника переменного тока
или катушки индуктивности измеряется
работой электрического поля по перемещению
единичного положительного заряда вдоль
пути, лежащего вне источника или катушки.

Вихревое (непотенциальное) электрическое
поле на этом пути практически отсутствует,
и напряжение равно разности потенциалов.

Электродвижущая
сила (ЭДС) — физическая величина,
характеризующая работу сторонних
(непотенциальных) сил в источниках
постоянного или переменного тока. В
замкнутом проводящем контуре ЭДС равна
работе этих сил по перемещению единичного
положительного заряда вдоль контура.

  • Наименование и
    обозначение производной единицы СИ:
  • международное
    – volt,
    V
  • русское
    – вольт,
    В
  • Выражение через
    основные и производные единицы СИ:
  • 1 V = 1 W / A

Формула напряжения тока. Как найти, вычислить электрическое напряжение.

Тема: как рассчитать величину напряжения зная ток, сопротивление, мощность.

Как известно у электрического напряжения должна быть своя мера, которая изначально соответствует той величине, что рассчитана для питания того или иного электротехнического устройства. Превышение или снижение величины этого напряжения питания негативно влияет на электрическую технику, вплоть до полного выхода ее из строя. А что такое напряжение? Это разность электрических потенциалов. То есть, если для простоты понимания его сравнить с водой, то это примерно будет соответствовать давлению. По научному электрическое напряжение — это физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку единичного заряда.

Наиболее распространенной формулой напряжения тока является та, в которой имеются три основные электрические величины, а именно это само напряжение, ток и сопротивление. Ну, а формула эта известна под названием закона Ома (нахождение электрического напряжения, разности потенциалов).

Звучит эта формула следующим образом — электрическое напряжение равно произведению силы тока на сопротивление. Напомню, в электротехнике для различных физических величин существуют свои единицы измерения. Единицей измерения напряжения является «Вольт» (в честь ученого Алессандро Вольта, который открыл это явление). Единица измерения силы тока — «Ампер», и сопротивления — «Ом». В итоге мы имеем — электрическое напряжение в 1 вольт будет равно 1 ампер умноженный на 1 ом.

Помимо этого второй наиболее используемой формулой напряжения тока является та, в которой это самое напряжение можно найти зная электрическую мощность и силу тока.

Звучит эта формула следующим образом — электрическое напряжение равно отношению мощности к силе тока (чтобы найти напряжение нужно мощность разделить на ток). Сама же мощность находится путем перемножения тока на напряжение. Ну, и чтобы найти силу тока нужно мощность разделить на напряжение. Все предельно просто. Единицей измерения электрической мощности является «Ватт». Следовательно 1 вольт будет равен 1 ватт деленный на 1 ампер.

Ну, а теперь приведу более научную формулу электрического напряжения, которая содержит в себе «работу» и «заряды».

В этой формуле показывается отношение совершаемой работы по перемещению электрического заряда. На практике же данная формула вам вряд ли понадобится. Наиболее встречаемой будет та, которая содержит в себе ток, сопротивление и мощность (то есть первые две формулы). Но, хочу предупредить, что она будет верна лишь для случая применения активных сопротивлений. То есть, когда расчеты производятся для электрической цепи, у которой имеется сопротивления в виде обычных резисторов, нагревателей (со спиралью нихрома), лампочек накаливания и так далее, то приведенная формула будет работать. В случае использования реактивного сопротивления (наличии в цепи индуктивности или емкости) нужна будет другая формула напряжения тока, которая учитывает также частоту напряжения, индуктивность, емкость.

P.S. Формула закона Ома является фундаментальной, и именно по ней всегда можно найти одну неизвестную величину из двух известных (ток, напряжение, сопротивление). На практике закон ома будет применяться очень часто, так что его просто необходимо знать наизусть каждому электрику и электронику.

Разновидности

Бывает двух видов: постоянным и переменным. Первое есть в электростатических видах цепей и тех, которые имеют постоянный ток. Переменный встречается там, где есть синусоидальная энергия

Важно, что синусоидальная энергия делится на действующее, мгновенное со средневыпрямленным. Единица измерения напряжения электрического тока вольт

Стоит также отметить, что величина энергии между фазами называется линейной фазой, а показатель тока земли и фаз — фазным. Подобное правило используется во всех воздушных линиях. На территории Российской Федерации в электрической бытовой сети стандартное — 380 вольт, а фазное — 220 вольт.


Основные разновидности

Постоянное напряжение

Постоянным называется разность между электрическими потенциалами, при которой остается такой же величина с перепадами полярности на протяжении конкретного периода. Главным преимуществом постоянной энергии является тот факт, что отсутствует реактивная мощность. Это означает, что вся мощность, которая вырабатывается при помощи генератора, потребляется нагрузкой за исключением проводных потерь. Течет по всему проводниковому сечению.

Что касается недостатков, есть сложность повышения со снижением энергии, то есть в моменте преобразования ее из-за конструкции преобразователей и отсутствия мощных полупроводниковых ключей. К тому же сложно развязывается высокая и низкая энергия.

Обратите внимание! Используется постоянная энергия в электронных схемах, гальванических элементах, аккумуляторах, электролизных установках, сварочных инструментах, инверторных преобразователях и многих других приборах. Вам это будет интересно Установка двухзонного счетчика

Вам это будет интересно Установка двухзонного счетчика


Постоянный ток

Переменное напряжение

Переменным называется ток, изменяющийся по величине и направлению периодически, но при этом сохраняющий свое направление в электроцепи неизменно. Нередко его называют синусоидальным. Одно направление, в котором движется энергия, называется положительным, а другое — отрицательным. Поэтому получающаяся величина называется положительной и отрицательной. Такой показатель является алгебраической величиной. В ответ на вопрос, как называется единица измерения напряжения, необходимо отметить, что это вольт. Значение его определяется по направлению. Максимальное значение — амплитуда. Бывает он:

двухфазным;


Двухфазный

трехфазным;


Трехфазный

многофазным.


Многофазный Используется активно в промышленности, на электрической станции, на трансформаторной подстанции и передается в каждый дом при помощи линий электрических передач. Больше всего используется три фазы для подключения. Подобная электрификация распространена на многих железных дорогах.

Обратите внимание! Стоит отметить, что имеются также некоторые виды двухсистемных электровозов, которые работают во многих случаях на переменном показателе. Переменный ток


Переменный ток

Обрыв нуля: как возникает и чем опасен

Нормальная работа электрооборудования происходит в сбалансированном режиме при нормально поданном напряжении на него. Если ноль пропадет, то бытовые приборы прекращают свою работу. 

Здесь есть важные отличия при эксплуатации проводки, собранной по схеме однофазного или трехфазного питания. 

Обрыв нуля в однофазной сети: опасность возникновения

Квартирная проводка подключается для подачи напряжения по двум проводам с потенциалами фазы и нуля (контура земли). Электрический ток нагрузки, совершающий полезную работу, может протекать только по замкнутому контуру. 

Это значит, что если один потенциал от обмотки трансформаторной подстанции не будет подведен к розетке или лампочке в квартире, то на них напряжения, а, следовательно, и работы не будет. 

Однако здесь есть особенность, связанная с безопасностью жильцов. 

Обычно розеточные группы собираются шлейфом при параллельном подключении между собой. В одну из них может быть вставлена вилка шнура питания какого-то прибора: холодильника, стиральной машины, микроволновки и т п. 

В такой ситуации через внутреннюю схему этого прибора потенциал фазы пройдет на контакт нуля розетку и дальше — к концу подключенного, но оборванного провода. 

Электрики говорят по этому поводу: две фазы в розетке! Их легко заметить однофазным индикатором напряжения. Его контрольная лампочка будет светиться в обоих контактных гнездах. 

Этот режим опасен тем, что оторванный конец не изолирован. Под действие вновь образованного потенциала может попасть человек, получить электрическую травму. 

Обрыв нуля в трехфазной сети и как от него защититься

Теперь еще раз внимательно посмотрим, как работает схема трехфазного подключения к квартирной проводке, приведенная выше. Разберем случай, когда оборван ноль не в однофазной цепи, а в общей питающей.  

 В этой ситуации до места обрыва практически ничего не изменяется: сформированная система напряжений 380/220 остается прежней. А вот внутри квартир происходят ну очень нехорошие вещи.  

Потребители остаются подключенными по схеме “звезды”. Но ее средняя точка, где был подвод нулевого потенциала, отсоединен от нейтрали трансформаторной подстанции. 

В итоге создаются новые контура последовательного подключения потребителей квартир к линейному напряжению 380, как я показал на правой картинке, взяв за основу сопротивления Rа и Rв.  

Теперь представим, что жильцы квартиры А очень бережливые. Они мало потребляют энергии, экономят деньги на ее оплате. При этом владелец второй квартиры B эксплуатирует большое количество бытовой техники. У него всегда высокое потребление. 

Другими славами электрика: сопротивление Rа и его мощность потребления близки к нулю, а Rв — завышены. 

Вместе они создали последовательную цепочку Rа+Rв, через которую потечет ток, вызванный приложенной разностью потенциалов 380 вольт. Этот общий ток по закону Ома на каждом сопротивлении создаст падение напряжения. (Перемножьте составляющие формулу величины). 

Все приборы в квартире подключены параллельно. Чем больше их в работе, тем выше суммарная мощность потребления и ниже сопротивление. По оборудованию обоих квартир течет один и тот же ток. К ним прикладывается напряжение, зависящее от сопротивления.

Получим, что к одной квартире будет приложено очень мало вольт, а к другой около максимального предела 380.

Что из этого следует:

  1. у экономного владельца к приборам будет приложено очень высокое напряжение порядка 380 В;
  2. во второй квартире электрооборудование станет запитано от очень низкого напряжения. Оно станет работать на износ или отключится.

Расточительный хозяин останется без света до устранения неисправности, а у бережливого выйдут из строя работающие электродвигатели, перегорят лампочки, блоки питания электронной аппаратуры и вся подключенная дорогостоящая техника.

Обрыв нуля в трехфазной сети на стороне питания энергоснабжающей организации очень опасен для бытовых потребителей. Но, от этого аварийного режима существует простая и эффективная защита — реле РКН.

Этот модуль очень быстро, за время роста первой четверти гармоники напряжения, вычисляет неисправность и до окончания первого периода колебания отключает питание с квартиры, разрывая цепи подвода электроэнергии. 

За счет этого все электрооборудование обесточивается, остается в исправном состоянии. 

Кстати, формулы расчета электрического напряжения для этого случая я привел прямо на картинке. Пользуйтесь на здоровье, делайте правильные выводы для себя. 

Я постарался очень простенько объяснить сложные процессы, связанные с электричеством. Поэтому у вас могут появиться дополнительные вопросы. Задавайте их. Будем выяснять совместно.

Физическая работа пробного заряда в электрическом поле

Итак, вы превратились в пробный электрический заряд q во много раз меньший чем заряд Q на обкладках конденсатора и начали свое путешествие между обкладок конденсатора. При этом вы будете испытывать действие кулоновых сил. Допустим, что вы являетесь отрицательно заряженной частицей подобно электрону, тогда вас будет притягивать в сторону обкладки +Q, и вас будет отталкивать от обкладки с зарядом -Q. Чем ближе вы будете к одной из обкладок, тем сильнее вы будете испытывать ее силовое действие.

Предположим, что вы вошли в конденсатор со стороны обкладки -Q и вас тут же начало отталкивать от нее в сторону обкладки +Q. Вы не стали сопротивляться такому воздействию и решили не противится природе и двигаться в полном согласии с влечением. Для этих целей как раз удобно расположены балки и лестницы, по которым вы можете свободно добраться до обкладки +Q любым маршрутом. Так как на вас действуют электрическая кулоновская сила, то вы начинаете свободно набирать скорость, словно вас несет ветром. В итоге вы преодолели расстояние по балке от одной лестницы до другой в направлении от точки A к точке B (смотрите рисунок выше). Лестницы — это эквипотенциальные линии, и соответственно, вы преодолели расстояние от одного значения потенциала к другому. В нашем случае вы двигались от того потенциала, который для вас больший по величине, к тому, что меньше. Если же вы были бы зарядом другого знака, то есть +q, тогда потенциалы поменяли бы свои знаки и больший стал бы меньшим, а меньший большим. Математически это означает умножение потенциалов на -1.

На вас действовала сила и вы переместились из точки A в точку B, другими словами вы двигались от потенциала φa (большего) к потенциалу φb (меньшему). Это подобно тому, как если бы вы плыли по течению реки на плоту, когда вам не нужно грести веслами и не требуется мотора для движения. Можно сказать, что вами совершена механическая работа, которая является вычисляется как произведение силы на расстояние. Совершив такое перемещение, вы потеряли часть потенциальной энергии, которая перешла в кинетическую (скорость вашего движения), а затем выделилась вероятно в виде тепла при торможении. Проделав обратный путь из точки B в точку A, вы будете двигаться как бы против течения, вам придется затратить энергию, грести веслами, использовать мотор и т. п. Переместившись обратно вы увеличите свою потенциальную энергию, потому как переместитесь в точку с большим потенциалом и ваше энергетическое состояние увеличится.

Разность этих двух потенциалов φa и φb и будет являться электрическим напряжением. Это равнозначные понятия, но в практической электротехнике чаще всего употребляют выражение не разность потенциалов, а напряжение. При рассмотрении электрических цепей употребляют такое выражение как падение напряжения на участке цепи, а для источников электричество та же самая разность потенциалов определяется как электродвижущая сила (ЭДС).

Разность потенциалов Δφ=φ12 всегда показывает какую работу A может совершить носитель заряда q при перемещении этого заряда из точки с одним потенциалом φ1 в точку с другим потенциалом φ2. При вычислении надо иметь в виду, что потенциалы могут быть как со знаком плюс, так и со знаком минус.

Если заряду для такого перемещения требуется затратить энергию, а значит увеличить свой потенциал, то тогда работа А будет со знаком (-), а если носитель заряда перемещается из области высокого потенциала в область с низким потенциалом, тогда происходит выделение энергии и работа А будет со знаком (+). Таким образом электрическое напряжение — это энергетическая характеристика электрического поля и представляет собой разность потенциалов Δφ. Это значит, что принципиально неверно утверждать, что напряжение — это потенциал. Электрическое напряжение – это всегда разность потенциалов и она возможна только между двумя точками электрического поля. Если имеется одна точка в пространстве электрического поля, тогда уместно говорить только о потенциале этой точки, но никак ни о ее напряжении.

Необходимо совершенно ясно представлять в чем заключаются различия между такими понятиями как: напряженность электрического поля E, потенциал φ, и, конечно, разность потенциалов — электрическое напряжение. Поняв эти различия, будет совершенно легко разобраться с тем, что такое электрический ток.

Метода треугольника закона Ома

Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Рисунок 5 – Треугольник закона Ома

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Рисунок 6 – Закон Ома для определения R

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Рисунок 7 – Закон Ома для определения I

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

Рисунок 8 – Закон Ома для определения E

В конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!

Электрическое напряжение: объяснение простыми словами

Электрическим напряжением обозначается физическая величина, равная разности потенциалов между двумя точками электрического поля при перемещении единичного заряда. Для простых пользователь такое обозначение не всегда понятно. Поэтому в этой статье мы попытаемся простым, доступным языком рассказать, что собой представляет электрическое напряжение, как оно измеряется и для чего это нужно.

Что такое разность потенциалов?

Для начала проанализируем рисунок:

В первой бутылке вода находится на уровне 300 мм, а во второй – на отметке 150 мм. Разница между уровнями воды в обоих емкостях составляет 150 мм. Если рассматривать это с точки зрения науки об электричестве, это и есть разность потенциалов.

Однако, что будет, если соединить обе бутылки шлангом, а внутрь поместить обычный пластиковый шарик?

Из школьного урока физики о принципе соединяющихся сосудах знаем, что из бутылки, где уровень воды больше, жидкость постепенно перетечет в бутылку с более низким уровнем. Под воздействием потока воды шарик внутри соединяющего шланга будет перемещаться. Процесс перетекания завершится после того, как в обоих бутылках уровень жидкости уравновесится, станет одинаковым.

Иными словами, в ситуации, когда в соединенных между собой емкостях уровень жидкости станет одинаковым, результатом разности потенциалов станет ноль. Шарик останется на месте за счет электродвижущей силы, которая, по итогам эксперимента, равна нулю.

Что такое электродвижущая сила?

Аналогично напряжению, единицей измерения электродвижущей силы (ЭДС) является Вольт.

Для проведения следующего эксперимента понадобится вольтметр (прибор, измеряющий вольты) и обычная батарейка.

При исходном замере прибор покажет 1.5 В (Вольта). Однако это не является напряжением – значение указывает на величину электродвижущей силы.

На следующем этапе эксперимента к батарейке подключаются две лампочки. А напряжение измеряется в разных участках электроцепи.

Внимание следует уделить следующим показателям: напряжение для одной лампочки составляет 1 Вольт, для другой же это значение 0.3 Вольта. Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах

Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах.

Мощность=Напряжение*ток (Р=U*I)

Из этого следует, что чем больше будет значение мощности лампы, тем большее напряжение будет на ней.

Однако, как же получается: если мощность батарейки 1.5 Вольта, к которой подключены лампочки, разделена на 1 Вольт и 0.3 Вольта, куда направились еще 0.2 Вольта? Дело в том, что каждая батарейка наделена своим внутренним сопротивлением, поэтому недостающие 0.2 Вольта были направлены именно сюда.

Резюме

Электродвижущей силой определена физическая величина, характеризующая в источниках тока работу сторонних силовых ресурсов. Посредством электродвижущей силы мы можем определять, как переносится заряд от источника тока по всей электрической цепи. Напряжение показывает этот процесс лишь на отдельном участке этой цепи. Если проще: напряжение – это внешнее силовое воздействие, способствующее перемещению шарика в шланге, соединяющим сосуды из выше приведенного примера. В электричестве напряжение обозначено силой, которая обеспечивает перемещение электронов между атомами.

Рассмотрим еще один пример

Представьте, что вам по силам будет поднять камень, вес которого составляет 40 кг. Это означает, что вы обладаете подъемной силой, равной 40 кг – в электричестве это обозначается как электродвижущая сила. Вы следуете и на своем пути вам попадается камень весом 20 кг. Вы его также берете и переносите на расстояние 10 метров. Для осуществления этого действия вам понадобилось определенное количество энергии, что в электричестве представляется как напряжение. Далее вам попадается камень весом в 30 кг. Следовательно, для его переноса из одного места в другое вам понадобится больше энергии, чем для камня, масса которого не превышала 20 кг. Однако подъемная сила (в электричестве ЭДС), независимо от веса переносимого вами камня, остается всегда одинаковой. При этом, вес камня определяет количество энергии, которая тратится на проведение этого действия (в электричестве это обозначено напряжением). Таким образом, на каждом отрезке вашего пути вы будете испытывать разное напряжение в зависимости от веса камня, который вы намерены перенести.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах

Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя

Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Вам это будет интересно Особенности теплого света

Закон Ома для участка цепи

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: