Гамма-всплеск

Что такое радиоактивность?

Радиоактивность – самопроизвольное превращение атомных ядер в ядра других элементов. Сопровождается ионизирующим излучением. Известно четыре типа радиоактивности:

  • альфа-распад – радиоактивное превращение атомного ядра при котором испускается альфа-частица;
  • бета-распад — радиоактивное превращение атомного ядра при котором испускается бета-частицы, т.е электроны или позитроны;
  • спонтанное деление атомных ядер — самопроизвольное деление тяжелых атомных ядер (тория, урана, нептуния, плутония и других изотопов трансурановых элементов). Периоды полураспада у спонтанно делящихся ядер составляют от нескольких секунд до 1020 для Тория-232;
  • протонная радиоактивность — радиоактивное превращение атомного ядра при котором испускаются нуклоны (протоны и нейтроны).

Что такое изотопы?

Изотопы – это разновидности атомов одного и того же химического элемента, обладающие разными массовыми числами, но имеющие одинаковый электрический заряд атомных ядер и потому занимающие в периодической системе элементов Д.И. Менделеева одинаковое место. Например: 55Cs131, 55Cs134m, 55Cs134, 55Cs135, 55Cs136, 55Cs137. Различают изотопы устойчивые (стабильные) и неустойчивые – самопроизвольно распадающиеся путем радиоактивного распада, так называемые радиоактивные изотопы. Известно около 250 стабильных, и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить Pb206, Pb208 являющийся конечным продуктом распада радиоактивных элементов U235, U238 и Th232.

Послесвечения: релятивистские джеты

В отличие от собственно гамма-всплеска, механизмы послесвечения достаточно хорошо разработаны теоретически. Предполагается, что некоторое событие в центральном объекте инициирует образование ультрарелятивистской разлетающейся оболочки (лоренц-фактор Γ порядка 100). По одной модели, оболочка состоит из барионов (масса её должна составлять 10−8 — 10−6 масс Солнца), по другой — это замагниченное течение, в котором основная энергия переносится вектором Пойнтинга.

Весьма существенно, что во многих случаях наблюдается сильная переменность как в самом гамма-излучении (на временах порядка разрешения прибора — миллисекунд), так и в рентгеновских и оптических послесвечениях (вторичные и последующие вспышки, энерговыделение в которых может быть сравнимо с самим всплеском). До некоторой степени это можно объяснить столкновением нескольких ударных волн в оболочке, двигающихся с разными скоростями, но в целом это явление представляет серьёзную проблему для любого объяснения механизма работы центральной машины: нужно, чтобы после первого всплеска она могла ещё давать несколько эпизодов энерговыделения, иногда через времена порядка нескольких часов.

Послесвечение обеспечивается в основном синхротронным механизмом и, возможно, обратным комптоновским рассеянием.

Кривые блеска послесвечений довольно сложны, так как они складываются из излучения головной ударной волны, обратной ударной волны, возможного излучения сверхновой и т. д. Иногда на последних стадиях излучения наблюдается излом кривой блеска (от степени −1 до −2), что считается свидетельством в пользу наличия релятивистского джета: излом происходит тогда, когда Γ-фактор падает до значения ~1/θ, где θ — угол раскрытия джета.

Ссылки

  • «Хаббл» открыл первую килонову // 5 августа 2013
  • PBS NOVA: Death Star (gamma-ray bursts)
  • Animation of Gamma Ray Burst (Quicktime)
  • GRB 971214: Most energetic event in the universe
  • GRB 971214: Space Science Update Webcast (RealMedia)
  • Gamma-ray Burst Real-time Sky Map based on Swift data
  • Gamma ray bursters segment of Science Friday, 3 Jun 2005 (RealAudio)
  • Gamma-ray burst FAQ from CalTech
  • Most distant cosmic blast sighted (BBC reports a registered GRB from about 13 billion light years away)
  • Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked (ESO)
Орбитальные обсерватории ГВ
Проекты исследования ГВ (Требуется перевод)
  • GROND: Gamma-Ray Burst Optical Near-infrared Detector
  • PROMPT: Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes
  • RAPTOR: Rapid Telescopes for Optical Response
  • ROTSE: Robotic Optical Transient Search Experiment
  • PAIRITEL: Peters Automated Infrared Imaging Telescope
  • MASTER: Mobile Astronomical System of the Telescope-Robots
  • KAIT: The Katzman Automatic Imaging Telescope
  • REM: Rapid Eye Mount
Научно-популярные фильмы

Гамма-всплески (Передача А. Гордона)

Области применения гамма-лучей

Даже смертоносным лучам пытливые умы учёных нашли сферы применения. В настоящее время гамма-излучение используется в различных отраслях промышленности, идут на благо науки, а также успешно применяются в различных медицинских приборах.

Для лечения онкологических новообразований гамма-лучи незаменимы, так как способны разрушить аномальные клетки, и прекратить их стремительное деление. Иногда остановить аномальный рост раковых клеток невозможно ничем, тогда на помощь приходит гамма-излучение, где клетки уничтожаются полностью.

Применяется гамма ионизирующее излучение для уничтожения патогенной микрофлоры и различных потенциально опасных загрязнений. В радиоактивных лучах стерилизуют медицинские инструменты и приборы. Также данный вид радиации применяется для обеззараживания некоторых продуктов.

Гамма-лучами просвечивают различные цельнометаллические изделия для космической и других отраслей промышленности с целью обнаружения скрытых дефектов. В тех областях производства, где необходим предельный контроль за качеством изделий, этот вид проверки просто незаменим.

При помощи гамма-лучей учёные измеряют глубину бурения, получают данные о возможности залегания различных пород. Гамма-лучи могут быть использованы и в селекции. Строго дозированным потоком облучаются определённые отобранные растения, чтобы получить нужные мутации в их геноме. Таким способом селекционеры получают новые породы растений с нужными им свойствами.

С помощью гамма-потока определяются скорости космических аппаратов и искусственных спутников. Посылая лучи в космическое пространство, учёные могут определить расстояние и смоделировать путь космического аппарата.

Всплески: длинные, короткие…

По мнению профессора Техасского университета в Остине Крейга Уилера, возникновение длинных гамма-всплесков наилучшим образом объясняет модель, связывающую их со взрывами сверхмассивных коллапсирующих звезд. Такие взрывы оставляют после себя или черные дыры, или магнетары — сильно намагниченные быстро вращающиеся нейтронные звезды. В соответствии с этой моделью гамма-кванты должны выбрасываться внутри узких конусов, направленных вдоль оси вращения гибнущей звезды. Их источниками, скорее всего, служат ультрарелятивистские джеты — потоки частиц, чья скорость лишь на тысячные доли процента меньше скорости света. Общая энергия коллимированных выбросов гамма-квантов должна быть в тысячи раз меньше изотропного эквивалента и поэтому даже в максимуме не превышает 1051 эрг (1044 Дж). Коллапсу очень массивной звезды вполне по силам обеспечить такой энергетический выход. Для свободного выброса гамма-квантов звезда должна избавиться от внешней водородной оболочки, иначе та поглотит большую часть излучения. «Но это лишь общая картина, — говорит Уилер. — Детали работы космических машин, преобразующих гравитационную и вращательную энергию гибнущих звезд в направленное гамма-излучение, пока еще не выяснены. В частности, нам неизвестно, какой вклад в эти процессы вносят заряженные частицы и магнитные поля и на каких расстояниях от центра коллапсара рождаются основные потоки гамма-квантов».

Наиболее популярная модель происхождения коротких всплесков утверждает, что они возникают при столкновении намагниченных нейтронных звезд, которые обращаются вокруг общего центра инерции и постепенно сближаются из-за потери энергии, уносимой гравитационными волнами. Однако у этой модели есть свои белые пятна. Крейг Уилер о.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение — это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Примечания

  1. В и СМИ встречается также термин гамма-вспышка.
  2. Podsiadlowski P., Mazzali P. A., Nomoto K., et al. The Rates of Hypernovae and Gamma-Ray Bursts: Implications for Their Progenitors // The Astrophysical Journal Letters. — 23 апреля 2004. — № 1.
  3. Melott A. L., Lieberman B. S., Laird C. M., et al. Did a gamma-ray burst initiate the late Ordovician mass extinction? // International Journal of Astrobiology. — Январь 2004. — № 1.
  4. ↑ Gamma-Ray Bursts: a brief history. NASA. Архивировано из первоисточника 5 февраля 2012.
  5. Hurley, Kevin. A Gamma-Ray Burst Bibliography, 1973-2001 // Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission / Ed. by G. A. Ricker, R. K. Vanderspek. — American Institute of Physics, 2003. — P. 153-155. — ISBN 0-7534-0122-5. (см. ISBN )

  6. Mazets, E.P., Golenetskii, S.V, et al. (1979). «Venera 11 and 12 observations of gamma-ray bursts — The Cone experiment». Soviet Astronomy Letters 5: 87-90.

  7. Лучков Б. И., Митрофанов И. Г., Розенталь И. Л. О природе космических гамма-всплесков. — 1996. — Т. 166. — № 7. — С. 743–762. (Проверено 4 августа 2011)
  8. NASA HEASARC: IMP-6.. NASA. Архивировано из первоисточника 5 февраля 2012.
  9. NASA HEASARC: OSO-7.. NASA. Архивировано из первоисточника 5 февраля 2012.
  10. Мазец Е. П., Голенецкий С. В., Ильинский В. Н. Вспышка космического гамма-излучения по наблюдениям на ИСЗ «Космос-461» // Письма в ЖЭТФ. — 1974. — Т. 19. — С. 126—128.
  11. Klebesadel R. W. et al. Observations of gamma-ray bursts of cosmic origin. — USA.: 1973. — Т. 182. — С. 85—88.
  12. Schilling 2002, p. 19-20
  13. Аптекарь Р.Л., Голенецкий С.В., Мазец Е.П., Пальшин В.Д., Фредерикс Д.Д. Исследования космических гамма-всплесков и мягких гамма-репитеров в экспериментах ФТИ КОНУС. — 2010. — Т. 180. — С. 420–424.
  14. Голенецкий С.В., Мазец Е.П. // Сб. Астрофизика и космическая физика. — М.: 1982. — С. 216.
  15. Голенецкий С.В., Мазец Е.П. // Сб. Астрофизика и космическая физика (Итоги науки и техники. Сер. Астрономия). — М.: 1987. — Т. 32. — С. 16.
  16. NASA HEASARC: CGRO.. NASA. Архивировано из первоисточника 5 февраля 2012.
  17. Meegan, C.A. et al. (1992). «Spatial distribution of gamma-ray bursts observed by BATSE». Nature 355: 143. doi:10.1038/355143a0.

  18. Schilling, Govert (2002). «Flash! The hunt for the biggest explosions in the universe». Cambridge University Press.

  19. Paczyński, B. (1995). «How Far Away Are Gamma-Ray Bursters?». Publications of the Astronomical Society of the Pacific 107: 1167. doi:10.1086/133674. Bibcode: 1995PASP..107.1167P.

  20. Piran, T. (1992). «The implications of the Compton (GRO) observations for cosmological gamma-ray bursts». Astrophysical Journal Letters 389: L45. doi:10.1086/186345.

  21. Lamb, D.Q. (1995). «The Distance Scale to Gamma-Ray Bursts». Publications of the Astronomical Society of the Pacific 107: 1152. doi:10.1086/133673. Bibcode: 1995PASP..107.1152.

  22. Hurley, K., Cline, T. and Epstein, R. (1986). «Error Boxes and Spatial Distribution». in Liang, E.P. and Petrosian, V.. Gamma-Ray Bursts. AIP Conference Proceedings. 141. American Institute of Physics. pp. 33–38. ISBN 0-88318-340-4.
  23. Pedersen, H. et al. (1986). «Deep Searches for Burster Counterparts». in Liang, Edison P.; Petrosian, Vahé. Gamma-Ray Bursts. AIP Conference Proceedings. 141. American Institute of Physics. pp. 39–46. ISBN 0-88318-340-4.
  24. Hurley, K. (1992). «Gamma-Ray Bursts — Receding from Our Grasp». Nature 357: 112. doi:10.1038/357112a0. Bibcode: 1992Natur.357..112H.

  25. Fishman, C.J. and Meegan, C.A. (1995). «Gamma-Ray Bursts». Annual Review of Astronomy and Astrophysics 33: 415–458. doi:10.1146/annurev.aa.33.090195.002215.

  26. Paczyński, B. and Rhoads, J.E. (1993). «Radio Transients from Gamma-Ray Bursters». Astrophysics Journal 418: 5. doi:10.1086/187102. Bibcode: 1993ApJ…418L…5P.

  27. Самый яркий взрыв Вселенной
  28. Слияние нейтронных звезд может служить источником энергии коротких гамма-всплесков // Элементы
  29. Blinnikov, S., et al. (1984). «Exploding Neutron Stars in Close Binaries». Soviet Astronomy Letters 10: 177.

  30. Гамма-всплески | Энциклопедия безопасности

История открытия: как обнаружили гамма-всплески?

Гамма-всплеск GRB 130427A

Первый гамма-всплеск был определен в 1967 году военным спутником Vela. Парадокс открытия заключен в том, что в конце 60-х гг. правительство США потратило миллионы долларов на создание спутников-шпионов для слежения за возможными испытаниями ядерного оружия в СССР. Приборы, размещенные на них, должны были фиксировать возникающее гамма-излучение. И они срабатывали так часто, что военные генералы усомнились в возможности противника провести столько секретных ядерных взрывов. Примитивные приборы не определяли местоположение излучения и не давали информации, где оно возникло – на земле или в космосе. Поняв, что природа изучаемого катаклизма не связана с СССР, военные потеряли к ней интерес, и в 1973 году были опубликованы имеющиеся данные по этому открытию.

Чтобы вычислить расположение ГВ, в 1976 году создали Межпланетную сеть (IPN), позволяющую при взаимодействии детекторов, работающих в унисон, использовать метод триангуляции. Эта организация функционирует и в наши дни. Эксперименты КОНУС, проводимые на космических станциях «Венера», позволили выявить отдельный класс гамма-всплесков, имеющих кратковременный характер, и случайность их появления.

Потенциальная опасность

Гамма-всплески во Вселенной распространены повсеместно и происходят достаточно часто. Возникает закономерный вопрос: представляют ли они опасность для Земли?

Теоретически рассчитаны последствия для биосферы, которые может вызвать интенсивное гамма-облучение. Так, при энерговыделении 1052 эрг (что соответствует 1039 МДж или около 3,3∙1038 кВт∙ч) и расстоянии 10 световых лет эффект от всплеска был бы катастрофическим. Подсчитано, что на каждом квадратном сантиметре поверхности Земли в том полушарии, которое имело бы несчастье попасть под гамма-поток, выделится 1013 эрг, или 1 МДж, или 0,3 кВт∙ч энергии. Другому полушарию тоже не поздоровится – все живое там погибнет, но чуть позже, вследствие вторичных эффектов.

Однако вряд ли нам угрожает такой кошмар: вблизи Солнца просто нет звезд, способных обеспечить столь чудовищное энерговыделение. Судьба стать черной дырой или нейтронной звездой близким к нам звездам также не грозит.

Конечно, гамма-всплеск представлял бы серьезную угрозу биосфере и на значительно большем расстоянии, однако следует учитывать, что его излучение распространяется не изотропно, а достаточно узким потоком, и вероятность попасть в него у Земли намного меньше, чем вообще его не заметить.

Откуда у Луны гамма-излучение

Большинство гамма-излучения в нашей Солнечной системе исходит из отдаленных источников, таких как квазары и активные галактические ядра (AGN). Луна является косвенным источником гамма-излучения и производит его посредством взаимодействия с космическими лучами.

Космические лучи — это тип высокоэнергетического излучения, которое в основном производится за пределами нашей Солнечной системы. Их излучают такие космические объекты, как сверхновые и активные галактические ядра. Когда космические лучи ударяют материю, как, например, поверхность Луны, они создают гамма-лучи. Луна фактически поглощает большую часть созданных гамма-лучей, но некоторые отражаются обратно в космос.

Сила гамма-лучей Луны не всегда постоянна, она меняется со временем. Марио Никола Мацциотта и Франческо Лопарко, два исследователя из Национального института ядерной физики Италии, собрали данные о гамма-лучах Луны, которые превышали 31 миллион электрон-вольт (в 10 миллионов раз мощнее видимого света), и сделали своего рода «выдержку». Это привело к следующему изображению, на котором вид с течением времени улучшается.


Отраженные от Луны гамма-лучи с энергией 31 МэВ и выше, которые зафиксировал космический гамма-телескоп NASA «Fermi». Последовательность изображений показывает выдержанную экспозицию от двух до 128 месяцев. Изображение: NASA / DOE / Fermi LAT Collaboration

Однако эта яркость не постоянна. Данные космического телескопа «Ферми» показывают, что яркость Луны изменяется примерно на 20% в течение 11-летнего цикла активности Солнца. В течение этого цикла Солнце испытывает изменения в своем магнитном поле. В результате иногда на Луну попадает больше космических лучей, чем в другое время.


Магнитное поле Солнца изменяется как по силе, так и по сложности в течение 11-летнего цикла. Это сравнение показывает относительную сложность солнечного магнитного поля между январем 2011 года (слева) и июлем 2014 года (справа) Изображение: NASA

Привязка к небу

Первый шаг к преодолению этой неопределенности был сделан командой ученых во главе с голландским астрономом Яном ван Парадейсом 14 лет назад. Ученые работали с данными, полученными с итало-голландской орбитальной обсерватории BeppoSAX, которая в первую очередь предназначалась для исследований в рентгеновском диапазоне, но была оснащена детектором длинноволновых гамма-квантов с энергиями 60−600 кэВ (иногда эту область относят к верхней границе рентгеновского спектра).

28 февраля 1997 года BeppoSAX зарегистрировал вошедший в историю 80-секундный гамма-всплеск GRB 970228 (первые две цифры означают год, вторые — месяц, третьи — число). Погрешность в определении угловых координат на сей раз не превышала одной угловой минуты, и как раз на этом участке неба был выявлен чрезвычайно тусклый объект, различимый с помощью оптических телескопов. Правда, расстояние до него удалось определить лишь приблизительно, но это было только начало. 8 мая и 14 декабря BeppoSAX навел ученых еще на два длинных гамма-всплеска с оптическими двойниками, которые уж несомненно отстояли от Солнца на космологические дистанции (последний — аж на 12 млрд световых лет!).

Самые значимые ГВ

С момента фиксации первого гамма-всплеска в 1967 году ведется их список в хронологическом порядке. В него вошли явления, характеристики которых отличаются от стандартных параметров. Обозначение дат ведется: год, месяц, день.

  • Поток энергии с наибольшей яркостью среди первых наблюдаемых – GRB 971214.
  • Ближайший из замеченных всплесков – GRB 980425.
  • Явление, отличающееся особой яркостью, видимое в оптическом и гамма-диапазоне, – GRB 990123.
  • Возникший близко к Земле гамма-всплеск с досконально исследованным послесвечением – GRB 030329.
  • Первый выброс энергии от сверхновой, снятый с начала появления, – GRB 060218.
  • Ярчайшее послесвечение во Вселенной – GRB 080319.
  • Гамма-всплеск, произошедший на наибольшем удалении от Солнечной системы из наблюдаемых, – GRB 090423.
  • Явление, имевшее наибольшую длительность, составляющую временной интервал до 12 месяцев, – GRB 110328.

Интересные факты: последствия ГВ для Земли

Гамма-всплеск, произошедший на расстоянии в несколько миллионов св. лет в пределах нашей Галактики, и направление выброса которого будет направленно на Землю, приведет к частичному или полному исчезновению существующих жизненных форм и видов. С такими катаклизмами ученые связывают массовые вымирания, произошедшие 250 млн. лет назад, – тогда погибло 95% обитавших видов. А еще раньше на 200 млн. лет погибло 60% морских обитателей.

Прогнозировать время энергетического удара гамма-всплеска невозможно. Но частота появления в Галактике таких явлений измеряется миллионами лет. Так что сегодня нет поводов для беспокойства о нашем будущем.

Классификация

В настоящее время на основе наблюдаемых особенностей выделяют два типа гамма-всплесков:

  • Длинные, характеризующиеся продолжительностью от 2 секунд. Таких вспышек насчитывается около 70 %. Средняя длительность их – 20–30 секунд, а максимальная зарегистрированная продолжительность вспышки GRB 130427A составила более 2 часов. Есть точка зрения, согласно которой настолько долгие события (их сейчас насчитывается три) следует выделить в особый тип ультрадлинных всплесков.
  • Короткие. Они развиваются и затухают в узких временных рамках – менее 2 секунд, в среднем же продолжаются около 0,3 секунд. Рекордсменом пока является вспышка, продолжавшаяся всего 11 миллисекунд.

Далее мы рассмотрим наиболее вероятные причины гамма-всплесков двух основных типов.

Способы защиты

Те лучи, которые, обладая огромными скоростями, проникают в защищённое пространство земли, не причиняют большого вреда живым существам. Наибольшую опасность представляют источники и гамма-радиация, полученная в земных условиях.

Самым главным источником опасности радиационного заражения остаются предприятия, где под контролем человека осуществляется контролируемая ядерная реакция. Это атомные электростанции, где производится энергия для обеспечения населения и промышленности светом и теплом.

Для обеспечения работников этих объектов принимаются самые серьёзные меры. Трагедии, произошедшие в разных точках мира, из-за утраты человеком контроля за ядерной реакцией, научили людей быть осторожными с невидимым врагом.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: