Как скаты вырабатывают электричество?

Как рыбы вырабатывают электричество?

Все виды электрических морских существ вырабатывают электричество во время движения. За счет того, что мышцы постоянно меняют свою форму и взаимодействуют с окружением, они накапливают электричество. При этом, голова и хвост выступают в роли плюса и минуса соответственно. Это помогает удерживать заряд в мышцах, словно в батареи.

Подробнее разберем, что представляют собой мышцы для накапливания зарядов. Они могут отличаться внешне у каждого вида рыбы, но имеют схожую структуру. Мышцы состоят из столбиков, которые, в свою очередь, разбиты на пластины. Для накапливания электричества столбики соединены параллельно, а пластины последовательно. Между ними находится разность потенциалов, из-за чего при движении аккумулируется энергия, происходит накопление заряда.

Интересно:

Почему рыбы не мерзнут? Описание, фото и видео


Расположение электрических органов у электрического ската

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Размножение

Половой диморфизм у электрических сомов не выражен. Условия размножения изучены плохо. Относительно этого вопроса существуют только предположительные версии. По мнению арабов, живущих на берегах Нила, он рождает живых детёнышей, причём мечет их через рот (по некоторой аналогии с ланцетником, который мечет свои яйца через рот, и с Chromis multicolor, которая развивает икру в своей гортани и затем уже совсем развившихся рыбок выбрасывает изо рта). Согласно другой версии, самка сома роет ямку и, закончив, начинает издавать своего рода звуки (см. также утверждение Соренсена ниже), чтобы привлечь самца. Когда же последний приблизится, кладёт в неё икру и ждёт, чтобы самец её оплодотворил, а затем тотчас же его прогоняет и, прикрыв икру телом, сидит над ней до тех пор, пока из неё не выклюнутся мальки. Версии эти не подкреплены никакими доказательствами. Ни одному исследователю не довелось быть наблюдателем нереста электрического сома. Многочисленные попытки совмещения в аквариуме самца и самки оказывались неудачными, поскольку уже через неделю в живых оставалась только одна особь. Все попадающие в неволю электрические сомы отловлены в дикой природе.

Электричество и добыча пищи

     В животном мире есть существа, которые вырабатывают и применяют себе на пользу электричество. Этими существами являются так называемые «электрические» рыбы: электрические скаты, электрические угри и электрические сомы.

Как вырабатывается электричество у рыб

     Электричество вырабатывается у таких рыб, в особых «электрических органах», состоящих из стопок ячеек (шестигранных у скатов и ромбоидальных у сомов), которые составляют ряд призм или пластинок, отделенных — друг от друга пленками из соединительной ткани.

     У некоторых электрических скатов насчитывают более 450 призм в каждом правом и левом органе.

     В каждой ячейке имеется «электрическая пластинка», к которой подходят снизу разветвления нервов, и так называемое «промежуточное» студенистое вещество.

     Ячейка отделена от ячейки пленками из соединительной ткани. Получается род вольтова столба.

     В этих электрических пластинках вырабатывается электричество, причем в момент разряда электрическая пластинка заряжается снизу отрицательно, а сверху — положительно; следовательно, брюшная сторона тела рыбы в момент разряда заряжается отрицательно, а спинная — положительно.

Электрические рыбы и генерация электричества

     Развитие электрического органа показывает, что весь он является видоизменением мускулов, а электрическая пластинка представляет видоизменение «концевой» пластинки, которой нерв оканчивается в мускуле.

     Электрические органы размещаются: у скатов — у одних в головной части тела, у других — у корня хвостовой части в виде одной пары; у угрей в хвостовой части в виде двух пар; у сомов — под кожей и в мускулах по всему телу.

     Рыба приводит в действие свой электрический орган по произволу. Сила первых разрядов более значительна, чем последующих; после ряда разрядов сила чрезвычайно падает, становясь мало заметной, и нужно некоторое время отдыха для восстановления деятельности органов.

Управление работой электрических органов

     Управляет работой электрических органов головной мозг, в частности, электрические доли продолговатого мозга. Если отрезать у электрической рыбы голову, то действие электрического органа прекращается.

     Иннервируются электрические органы от спинного мозга. Наиболее сильные разряды дает электрический угорь; затем сравнительно сильные разряды получаются у электрического ската, более слабые дает электрический сом.

     Первичные разряды способны свалить человека, парализуя его движения и причиняя боль и головокружение, при этом боль в суставах головокружение могут продолжаться около суток.

     Электрический угорь ведет свою охоту ночью; производя электрические разряды, он оглушает всех рыб и раков в районе действия своего электрического органа, после чего и поедает их.

Электрические рыбы и генерация электричества

Электричество и добыча пищи

     Так же используют для добывания пищи разряды своих электрических органов и электрические скаты и сомы. Эти рыбы приводят в действие электрические органы и в целях защиты.

     Нет конкретных исследований о том, почему электрические рыбы, могут шокировать других животных, не шокируя себя, но одно из возможных объяснений, может заключаться в том, что тяжесть поражения электрическим током, зависит от количества и продолжительности тока, протекающего через любую заданную область тела.

     Для сравнения, тело угря имеет примерно те же размеры, что и рука взрослого мужчины. Чтобы вызвать спазм плеча, в течение 50 миллисекунд, должен протекать ток 200 миллиампер.

Электрические рыбы и генерация электричества

     Например, угорь генерирует гораздо меньше энергии, потому что его ток, протекает всего 2 миллисекунды. Кроме того, большая часть тока рассеивается в воде через кожу. Это, вероятно, уменьшает ток даже ближе к внутренним структурам, таким как центральная нервная система или сердце.

     Конечно, ток, полученный любой маленькой жертвой, также является лишь небольшой частью общего тока, генерируемого угрем. Тем не менее ток, разряженный в их меньшие тела, намного больше, пропорционально телу угря.

     Например, жертва в 10 раз меньше по длине, чем угорь, примерно в 1000 раз меньше по объему. Поэтому маленькие животные, рядом с электрическим угрем испытывают шок, а не сам разряжающийся угорь.

     Электрические органы представляют, как бы подобие электрической станции, аккумуляторов и электрической проводки. Лечение разрядами электрических рыб было знакомо диким племенам Америки, а также древним грекам.

Видео: Большой Барьерный Риф

Как отличить электрического ската?

Электрического ската достаточно легко выделить среди прочих животных, обитающих на подводных просторах. Внешне эти рыбы похожи на диск, достигающий от 50 см до 1 метра в диаметре с небольшим удлинением в виде подвижного хвоста, украшенного плавником. По бокам их округлого тела находятся почко-образные органы, которые и вырабатывают электричество.

Отличительной особенностью этого вида скатов является верхнее расположение глаз. Дайверы, которым доводилось увидеть его близко, говорят, что скат внимательно наблюдает за всем, что происходит вокруг, примечая мельчайшие подробности. Но это не так, ведь плоские рыбы практически слепы.

Окрас электрического ската может варьироваться от неброского серого тона до пестрых цветов. «Масть» во многом зависит от среды обитания этих удивительных существ, позволяя оставаться им практически незаметными на фоне дна. Какой бы не оказалась расцветка, представитель гнюсообразных все равно будет практически идеальным охотником, убивающим своих жертв в смертоносном «объятии» — он окружает камбалу, лосося или угря грудными плавниками и поражает серией электрических зарядов.

Наблюдение за размеренными и неторопливыми движениями плывущего в воде ската завораживает. Несмотря на его довольно крупные размеры, кажется, что этот совершенный подводный обитатель парит в каком-то медитативном трансе, отрешившись от всего, что его окружает. Но это впечатление обманчиво.

Электрический сом и человек

Применение человеком

Некоторые свойства электрического сома — в первую очередь, электрические — находят своё применение в различных сферах жизни.

Народная медицина

Жители Египта и экваториальной Африки с давних пор используют электрические свойства сома в народной медицине. В «Открытых тайнах древних магиков и чародеев» Галле пишет:

Существуют указания, что местные жители используют эту рыбу как своеобразный физиотерапевтический метод для лечения ревматизма. Прикладывать электрическую рыбу к телу больного рекомендовал и знаменитый древнеримский врач Гален. Некоторые исследователи сообщают, что туземцы Африки издавна используют электрического сома для общего укрепления организма своих детей: заставляют детей прикасаться к нему; помещают их в бочку с водой с рыбой; дают пить в больших количествах воду, в которой находилась рыба. Имеются сведения, что в лечебных целях используются не только электрические свойства: туземцы Африки и арабы вырезают электрический орган сома, сжигают его на угольях и этим дымом окуривают больных.

Нанесение физического вреда

Имеются сведения, что сильноэлектрические рыбы (включая и электрического сома) под видом лечения применялись для нанесения вреда человеку, например, для наказания не́мощных рабов. Если раб чувствовал немощность, болезнь и не мог более работать, то в целях «исцеления» его помещали в бочку с водой с сильноэлектрической рыбой, что, по всей вероятности, давало больному дополнительную мотивацию к выздоровлению и возвращению в рабочий коллектив. Впрочем, злой умысл рабовладельцев стоит под сомнением, поскольку подобное лечение практиковалось на всех, включая детей (см. выше).

Употребление в пищу

Мясо электрического сома употребляют в пищу. Существует мнение, что оно не обладает высокими вкусовыми качествами. Так или иначе, копчёный электрический сом является популярным среди африканского населения деликатесом. Известно, что электрического сома употребляли в пищу в Древнем Египте.

Содержание в аквариуме

Электрических сомов содержат в аквариуме из эстетических соображений, а также в целях их изучения. Совмещать при этом в одном аквариуме электрического сома с другими рыбами представляется проблематичным, поскольку последние подвергаются постоянной опасности получить электрический удар. Некоторые любители-аквариумисты утверждают, что с течением времени электрический сом может сделаться «ручным»: так, например, если до рыбы попытается дотронуться посторонний, то она немедленно ударит его током; если же до рыбы касается человек, к которому она «привыкла», то удара не последует.

Использование в научных исследованиях

  • Электрические органы сома были использованы в научных исследованиях нейронного метаболизма, аксонального транспорта и секреции медиатора, так как являлись наиболее подходящими для этой задачи за счёт своей способности к иннервации посредством лишь одного большого нейрона (Фолькнандт и Циммерманн, 1986; Жанецко, 1987).
  • Электрический сом, обитающий в реке Огба (Нигерия), наряду с Chrysichthys nigrodigitatus был использован в исследовании загрязнённости этой реки тяжёлыми металлами (Obasohan, Oronsaye, Obano, 2006). Причина выбора именно этих рыб заключалась в их многочисленности и распространённости в качестве пищи для местного населения.

Опасность для человека

Для человека электрический сом может представлять некоторую опасность. Известны случаи электрического шока, когда человек наступал босой ногой на сома. Однако у того же Галле можно найти следующее:

Впрочем, подобное объяснение не может претендовать на серьёзность. Ещё Альфред Брем указывал, что сила заряда зависит от состояния рыбы и что в отдельных случаях сома можно взять совершенно безнаказанно. Наибольшую опасность электрический сом представляет для рыбаков. Пехуэль-Леше сообщает:

В Древнем Египте электрический сом был известен даже как «тот, кто спас многих». Поводом для такого титула, по-видимому, послужил тот факт, что неопытные египетские рыбаки, получив электрический удар от мокрой сети, выпускали её из рук и лишались своего улова. Опытные же рыбаки, увидев среди улова электрического сома, целенаправленно вытряхивали всех пойманных рыб обратно в море, опасаясь получить электрический удар.

Определение

Ток – это течение или движение чего-либо. Отсюда можно сделать следующее определение.

Электрический ток – это направленное движение заряженных частиц (носителей электрического заряда) в веществе или вакууме.

В преимущественном большинстве носителями электрического заряда служат электроны, например в металлах. Гораздо реже – ионы, например в газах.

Обычно электрический ток происходит в металлах – проводах. Провода изготавливаются из алюминия, меди, серебра, золота и сплавов этих металлов в различных вариациях.

При этом скорость движения свободных электронов очень маленькая, не более 1 миллиметра в секунду. При этом скорость распространения электрического тока довольно велика – она почти равна скорости света. Поэтому когда мы щелкаем выключателем, свет зажигается мгновенно.

Эту скорость электронам придает источник электрической энергии. Благодаря источнику в проводнике (пусть это будет провод) создается электрическое поля, благодаря которому скорость электронов сильно увеличивается.

При этом должна быть создана электрическая цепь. Например, простая электрическая цепь состоит из:

  • источника — например батарейки;
  • проводника — например провода;
  • потребителя — например лампочки;
  • замыкателя — например выключателя.

Но это я забегаю веред, давайте обо всем по порядку. Начнем с источника.

Условия содержания

Несмотря на их грозное оружие, электрических сомов нередко содержат в аквариумах. Учитывая их немаленький размер, одной особи
потребуется по крайней мере 250-литровая ёмкость. Сомы эти не любят яркий свет, поэтому освещение должно быть приглушённым.
Рельеф дна необходимо разнообразить различными укрытиями: камнями, корягами, чтобы тому было где прятаться в дневное время. Если
собираетесь держать с ним растения, необходимо как можно тщательней закрепить их в грунте, поскольку массивный электрический сом
любит рыть грунт. Воду предпочитают тёплую, необходимо обеспечить фильтрацию и аэрацию. Каждую неделю нужно менять до трети
объёма аквариума.

Если в аквариуме есть обогреватель, крайне важно изолировать его, иначе сом при соприкосновении с ним получит ожоги, которые
могут быть для него фатальны

Откуда электричество у угря

Электрический угорь относится к пресноводным рыбам и распространен в северо-восточной части Южной Америки, в основном населяя притоки среднего и нижнего течения Амазонки. Длина продолговатого тела достигает 250 см, весить угорь может до 20 кг. Этот вид рыбы лишен чешуи, имеет оливково-коричневый окрас с оранжевым пятном на горле.

Электрические органы расположены по бокам тела, занимая 4/5 всей длины. Выглядят они как 70 горизонтальных колонн, в каждой из которых до 6 тысяч электрических пластинок. Пластинки состоят из уплощенных мышечных, железистых и нервных клеток, разделенных мембранами. Электрические органы связаны с мозгом угря нервными волокнами и используются для охоты, ориентации в пространстве в мутной воде, защиты и общения с другими электрическими угрями.

Для нападения электрический угорь использует импульсы напряжением в 300–600 В. Разряд длится всего 0,002–0,003 секунды, одна атака насчитывает от 4 до 8 импульсов. Импульсы не направлены конкретно к жертве, поэтому под воздействие электричества попадают все живые существа вокруг электрического угря. Вырабатываемого электрическим угрем тока хватает, чтобы защищаться даже от кайманов.

Описание

Внешние характеристики

Это довольно крупная рыба: длина отдельных особей превышает 1 метр. Масса крупной особи может составить 23 кг. Тело вытянутое. Голова несёт три пары усиков. Глаза маленькие, светящиеся в темноте. Окраска довольно пёстрая: тёмно-коричневая спина, буроватые бока и желтоватое брюхо. По телу разбросаны многочисленные тёмные пятна, грудные и брюшные плавники розовые, хвостовой плавник с тёмным основанием и широкой красной или оранжево-красной оторочкой. Спинного плавника у электрического сома нет. Грудные плавники не имеют колючек.

Электрический орган

Главной же особенностью электрического сома является наличие электрических органов, расположенных по всей поверхности тела, непосредственно под кожей. Они составляют 1/4 массы сома. Как было сказано выше, электрические органы способны вырабатывать разряды напряжением вплоть до 450 В (при силе тока в 0,1—0,5 А). Соединительные ткани служат в качестве своего рода перегородок для разделения электрического органа на несколько столбиков, составленных из большого количества мышечных, нервных и железистых клеток дискообразной формы, называемых электроцитами или электрическими пластинками, мембраны которых являются электрическими генераторами. У электрического сома насчитывается около 2 млн электроцитов. Их связь с нервной системой осуществляется через ответвления одной большой нервной клетки в спинном мозге. В столбиках электроциты расположены таким образом, что на лицевой стороне одного электроцита находится обратная сторона другого. Противоположные стороны электроцита электрически полярны, за счет чего связь электроцитов представляет собой последовательное электрическое соединение. Таким образом, достигается значительное увеличение общего напряжения разряда.

Электрический сигнал

Механизм генерации и обнаружения электрических сигналов электрической рыбой.
Электрические сигналы генерируются так называемыми электрическими органами. У слабоэлектрических видов, таких как рыба-слон (Gnathonemus petersii), этот орган расположен в области хвоста (Kawasaki).

У сильноэлектрических видов электрический орган имеет большие размеры и занимает значительную часть тела. Например, электрический орган угря занимает до 40% тела (Schmidt-Neilsen 2001).

Схематическое изображение рыб и их электрического органа. a) Сильноэлектрические, (b) слабоэлектрические. Электрический орган обозначен красным цветом. Поперечный срез указан линией. Стрелками обозначены направления и последовательность электрических сигналов, проходящих через орган; длина этих стрелок пропорциональна амплитуде последовательных фаз (если больше одного). Представители Raja и Torpedo хрящевые рыбы, все остальные — костные. Astroscopus, несколько видов звездочетов, окуни; Malapterurus electricus, электрический сом; Gnathonemus sp., рыба-слон, Gymnarchus niloticus являются Мормириформными (Mormyriforms); Electrophorus electricus, электрический угорь, Gymnotus sp. и Sternarchus sp. все Гимнотиформные (gymnotiforms), рыба-нож .Генерация электрических сигналов
Рыбу, способную генерировать электрические сигналы, называют электрогенной (лаборатория Нельсона). Электрические органы состоят из электрических пластинок, собранных в столбики, которые образуют измененную мышечную массу, неспособную к сокращению. В этих органах происходит генерация электрического тока. Каждая из пластинок имеет с одной стороны гладкую поверхность, которая снабжена нервными окончаниями; противоположная же сторона имеет складчатую структуру. В состоянии покоя обе стороны имеют положительный заряд снаружи и отрицательный внутри, поэтому разность потенциалов между сторонами равна нулю. Для того, чтобы произвести импульс, мозг посылает электрический сигнал к верхней пластинке столбика, который деполяризует богатую нервными окончаниями поверхность пластинки. Благодаря этому, создается напряжение вокруг пластинки, которое деполяризует следующую пластинку, образуя электрический ток. Таким образом, волна деполяризации проходит через весь столбик. Собранные в столбики электропластинки работают подобно группе, состоящей из батарей. Заряды, производимые этими соединенными между собой батареями, поступают в окружающую водную среду и используются как средство общения, а также как средство обнаружения предметов и оружие против потенциальных хищников или добычи с целью их нейтрализации или умерщвления (Schmidt-Neilsen 2001).

Анимация отражает принцип генерации электрического сигнала. В состоянии покоя, все электрические пластинки имеют единый заряд. При поступлении электрического импульса от мозга, гладкая иннервированная сторона пластинки деполяризуется, создавая напряжение. Волна продолжает движение вдоль столбика, генерируя заряд, который может быть очень мощным (илл. Masashi Kawasaki).

Электричество в организме человека

Все клетки используют свои биоэлектрические потенциалы, чтобы контролировать метаболические процессы, но некоторые специально используют токи для отличительных физиологических функций: нервные и мышечные клетки. Информация переносится импульсами (называемыми потенциалами действия), проходящими по нервным волокнам. Подобные импульсы в мышцах сопровождают мышечные сокращения. Среди других клеток, где специализированные функции зависят от поддержания биоэлектрических потенциалов, есть:

  • рецепторы, чувствительные к свету, звуку, прикосновению;
  • клетки, которые выделяют гормоны или другие вещества, участвующие в общем метаболизме.

Как дополнение к потенциалам, возникающим в нервных или мышечных клетках, науке известны относительно устойчивые или медленно меняющиеся потенциалы. Они возникают:

  • там, где клетки были повреждены;
  • когда большой орган непарный (полушария мозга, разные участки кожи);
  • при активной работе железы (фолликулы щитовидки);
  • специальных структурах во внутреннем ухе.

В организме человека накапливается и статическое электричество. Когда электронам некуда деваться, заряд накапливается на поверхностях до тех пор, пока он не достигнет критического максимума и не разрядится крошечной молнией. Хотя возникающая внезапная мышечная реакция неприятна, обычно она безвредна.

Биоэлектричество — одна из основных форм энергии в организме человека. Движущиеся потенциалы действия — это основа для центральных функций организма, от которых зависит:

  • проводимость двигательных, вегетативных или сенсорных сообщений по нервам;
  • сокращение мышц;
  • функция мозга.

В частности, двигательные нервные сигналы приводят к сокращению мышц, вегетативные — контролируют дыхание и сердцебиение, сенсорные — собирают всю информацию из внешнего мира, включая предупреждения о повреждениях организма (боль). Измеряя биоэлектрические потенциалы в органах и тканях, люди сейчас могут диагностировать такие заболевания, как инфаркт миокарда, а также создавать беспроводные биоэлектрические записывающие устройства, которые используются в кибермедицине.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: