Горя́чей вселе́нной тео́рия

Вселенная из ничего

Итак, давайте представим один кубический метр в виде ящика, заполненного конфетами, с условием, что в одном кубическом метре помещается 1000 конфет. Но что получится, если этот кубический метр станет больше в 10 раз? Ответ, кажется, прост – внутри по-прежнему будет 1000 конфет. Но из-за того, что объем вырос в тысячу раз, на один кубический метр будет приходиться только одна конфета. Это кажется логичным, однако у реальности свои правила: в одном кубическом метре содержится постоянно расширяющийся вакуум.

В какой-то момент его объем становится в тысячу раз больше изначального, после чего вакуум распадается. В результате плотность энергии внутри одного воображаемого ящика такая же, как и до расширения – вакуум не изменился, хотя наш ящик увеличился в 10 раз. Похоже на какую-то магию, не так ли? Как объясняет сам Линде, когда Вселенная расширяется в постоянном вакууме, энергия материи экспоненциально возрастает, в отличие от энергии гравитации. В результате вакуум распадается высвобождая «1000 конфет» – протонов, электронов и других частиц, а их количество становится пропорциональным объему Вселенной.

Таким образом, если экспоненциальный рост продолжается, возрастает и количество частиц. Постоянное расширение, между тем, не говорит нам ни слова о форме Вселенной. Хотя нам с вами на самом деле абсолютно все равно какой она формы, ведь с позиции наблюдателя Вселенная кажется плоской. Именно так – в более-менее упрощенном изложении выглядит теория инфляционной Вселенной, впервые выдвинутая Аланом Гутом, американским физиком и космологом в 1981 году. Примечательно, что в конце научной работы Гут пишет примерно следующее:

Гут также утверждает, что эти пузырьки сталкиваются в кипящей Вселенной и делают все процессы, в ней происходящие, хаотичными и… бесполезными

Но как это может быть? Попытки Гута найти ответ на этот вопрос привлекли внимание других ученых. В результате в свет вышло сразу две работы – первая, написанная Аланом Гутом в соавторстве с Эриком Вайнбергом в 1981 году, а вторая – и есть та самая работа Стивена Хокинга в соавторстве с Томасом Хертогом

Примечательно, что обе статьи пришли к одному и тому же выводу – теория инфляционной Вселенной не состоятельна. Однако Гут связался с Андреем Линде, в результате чего профессор Стэндфордского университета создал новую модель инфляционной Вселенной, за что был отмечен премией имени Георгия Гамова. Но при чем тут Мультивселенная?

Не исключено, что после смерти наше сознание переходит в альтернативную вселенную. Подробнее читайте в материале моего коллеги Рамиса Ганиева

Линде считает, что наша Вселенная похожа на балерину, которая перестав вращаться раскинула руки в разные стороны и замерла на месте. Это, безусловно, кажется невозможным, так как нарушает все известные законы физики. Однако использование новой модели инфляционной Вселенной позволяет многое узнать о Вселенной. О том, кто и почему впервые выдвинул теорию Мультивселенной, читайте в нашем материале.

Теория стационарной Вселенной

Космологическая модель стационарного состояния Вселенной была предложена в 1948 году британскими учеными сэром Германом Бонди, Томасом Голдом и Фредом Хойлом в качестве альтернативы теории Большого взрыва. В те годы сторонники «Большого взрыва» рассматривали нашу Вселенную как расширяющуюся наружу из одной точки. Сторонники же стационарного состояния пространства утверждают, что вся Вселенная в целом не меняется с течением времени. По их мнению, она всегда существовала и всегда будет существовать в своей нынешней форме.

Сегодня ученым известно, что с течением времени все звезды выгорают, а значит, космос меняется. Стационарная гипотеза Вселенной же утверждает, что новые звезды создаются точно с той скоростью, с которой распадаются старые (в частности, 1 атом водорода создается на 6 кубических километров / пространства в год), так что все остается по-прежнему, если смотреть достаточно широко на Вселенную в целом.

Несмотря на то что эта теория получила широкое распространение в 1950-х гг. (ее поддерживали многие астрофизики и космологи), она не могла объяснить новые открытия (особенно микроволновое фоновое излучение, существование которого было предсказано теорией Большого взрыва до ее открытия). В итоге уже к 1970-м годам научное сообщество в значительной степени отказалось от стационарной модели Вселенной. Правда, стоит отметить, что в мире до сих пор есть ученые, которые придерживаются этой теории. 

Джордж и сокровища Вселенной

Анни срочно требуется помощь её лучшего друга Джорджа. Робот, которого отец Анни, ученый-космолог Эрик, отправил, на Марс, ведёт себя очень странно; к тому же Анни обнаружила в папином суперкомпьютере в высшей степени загадочное письмо…

Неужели это послание от инопланетян?

Есть ли во вселенной кто-то, кроме нас? Как отыскать в космосе планету, пригодную для жизни?

Разобраться во всем этом непросто. Но Джордж, Анни и их новый друг Эммет не теряют надежды найти ответы на свои вопросы.

Новая книга Стивена и Люси Хокинг — это не просто захватывающая история космических приключений. В ней полным-полно удивительных фактов и новейших данных о нашей Вселенной. А еще вы найдёте в ней научные очерки, написанные лучшими учёными нашего времени!

Темная энергия вакуума

Вакуум в квантовой теории поля не является пустотой, а наполнен флуктуирующими полями вещества и излучения. Нетривиальность вакуума проявляется не только в космологии, но и в физике элементарных частиц — благодаря ненулевому значению поля Хиггса в вакууме элементарные частицы получают массу (см. Хиггсовский механизм нарушения электрослабой симметрии), а кварковые и глюонные конденсаты оказывают существенное влияние на наблюдаемое поведение сильновзаимодействующих частиц, называемых адронами. Были вакуумные флуктуации измерены и в лабораторном эксперименте: благодаря флуктуациям электромагнитного поля возникает притягивание двух проводящих пластин, так называемый эффект Казимира. Существование флуктуирующих в вакууме полей приводит к тому, что плотность энергии вакуума не равна нулю.

Наблюдая за темпом расширения Вселенной (то есть изменением геометрии пространства-времени), можно установить общую плотность энергии во Вселенной, а вклад барионного вещества, электромагнитного излучения и темной материи можно извлечь из других наблюдений. Таким образом было установлено, что вклад темной энергии составляет около 74%. (Все числа, указанные на рис. 2, — это оценки вклада в энергетический баланс Вселенной, справедливые для настоящего момента, в прошлом они были другими. Зависимость этих величин от времени можно вычислить, и оказывается, что, например, вклад темной энергии в ранней Вселенной, возраст которой сейчас составляет примерно 13,7 миллиарда лет, был пренебрежимо мал.)

Так называемая проблема темной энергии заключается в том, что оцененное из размерных соображений значение плотности ее энергии оказывается намного больше наблюдаемого

Когда мы принимаем во внимание все известные поля, включая гравитационное, характерным масштабом энергий вакуумных флуктуаций становится так называемая планковская масса (M_{Pl}), выражающаяся через фундаментальные физические постоянные так:.

Здесь (hbar) — это постоянная Планка, (c) — скорость света в вакууме, (G) — гравитационная постоянная Ньютона. Тогда из соображений размерности можно ожидать, что плотность энергии вакуума должна примерно удовлетворять равенству (rho_{vac}approx M_{Pl}^4), что больше наблюдаемого значения, которое в привычных нам величинах равно около 10−29 грамм на кубический сантиметр, приблизительно в 10123 раз! Можно подумать, что экстраполировать наши знания о физике элементарных частиц до планковской массы неправомерно, так как даже в экспериментах на Большом адронном коллайдере (LHC) мы достигаем энергий столкновения частиц «всего лишь» порядка ELHC = 1 ТэВ, что меньше массы Планка примерно в 1015 раз. Но даже если допустить, что выше этого масштаба физика кардинально меняется и становится совершенно непохожей на то, как мы ее себе представляем, то ожидаемое характерное значение плотности энергии вакуума (rho_{vac}approx E_{mathrm{LHC}}^4) все равно превышает наблюдаемое приблизительно в 1060 раз.

Вполне возможно, что для решения этой проблемы недостаточно нашего текущего понимания физики, основанного на квантовополевой Стандартной модели, описывающей элементарные частицы и их электромагнитные, слабые и сильные взаимодействия, и неквантовой ОТО, хорошо объясняющей гравитационное взаимодействие на макроскопических масштабах. Вероятно, это является дополнительным указанием на необходимость построения квантовой теории гравитации, объединяющей все взаимодействия, включая гравитационное, в рамках нового единого формализма. Основным кандидатом на роль такой теории в настоящее время является теория струн.

Что мы знаем наверняка

Вся теоретическая астрофизика сформирована на догадках, которые вытекают из тех немногих вещей, которые мы действительно знаем наверняка. То, что мы называем космическим микроволновым фоном (CMB), вносит большой вклад в эту наблюдаемую информацию. CMB состоит из следов излучения, оставшихся от ранней фазы Вселенной. Радиотелескопы могут уловить их, а затем преобразовать волны в своего рода изображение тепловой карты.

Это изображение на самом деле показывает нам, как содержимое Вселенной было распределено через 400 000 лет после Большого взрыва — самого раннего наблюдаемого снимка Вселенной, лишенной звезд, солнечных систем и галактик. Почти вся вселенная была однородной, за исключением крошечных флуктуаций, которые стали материей, образующей звëзды и галактики. Это изображение является доказательством того, что Вселенная сначала была плотно упакована, а затем расширилась до еë настоящего состояния.

Мы также знаем, что Вселенная продолжает расширяться, и даже можем до некоторой степени измерить, насколько быстро она это делает. CMB также служит подтверждением того, что более ранняя версия Вселенной была очень горячей. Наша эпоха намного холоднее.

Джордж и Большой взрыв

Это третья книга, смотрите её обзор.

Встречайте: третья книга про Джорджа, Анни, учёного Эрика Беллиса, суперкомпьютер Космос и полный загадок мир вокруг нас!

Профессор Эрик работает над масштабной «теорией всего» и катается на лунном ровере. Компьютер Космос ищет пристанище для поросёнка Фредди, которого бабушка подарила Джорджу на день рождения. У Анни появляется новый друг, сын режиссёра и скейтбордист… а в этом время в одном из темных подвалов университета Фоксбридж зреет заговор против исследований Эрика, плетутся интриги и готовится разрушительная бомба!

Джорджу и Анни предстоит спасти рассеянного учёного и его коллег, а заодно узнать, как возникла наша Вселенная, что связывает вакуум и пылесосы, есть ли в космосе другие солнечные системы, похожие на нашу, что такое законы Ньютона и теория относительности и многое-многое другое.

Захватывающий сюжет и простота, с которой Стивен и Люси Хокинг рассказывают о сложных вещах, способны пробудить интерес к науке даже в каменной статуе. А уж любознательным детям и взрослым гарантирован полный научно-развлекательный восторг!

Теория циклической Вселенной

Согласно общепринятой теории Большого взрыва, события «до» того, как Вселенная вырвалась из единственной сверхплотной точки, непознаваемы и неизвестны. Теория циклической Вселенной не отрицает Большой взрыв, но она предполагает, что за ним последует (и, вероятно, уже последовало) «Большое сжатие».

Согласно гипотезе, Вселенная в конечном итоге перестанет расширяться и начнет сжиматься, пока (снова), которая затем снова взорвется наружу.

В настоящий момент невозможно узнать, в каком универсальном цикле мы сегодня находимся (может быть, в первом, может быть, в одиннадцатимиллиардном), но, по мнению сторонников этой интересной теории, цикл расширения и сжатия будет продолжаться вечно.

Хотя эта теория и звучит правдоподобно (особенно если вы прилично выпили), второй закон термодинамики гласит, что Вселенная будет расширяться до тех пор, пока не будет израсходована вся энергия и все вокруг не станет непостижимо холодным и тихим. 

Популярная теория

Прежде чем погрузиться в тонкости увлекательной теории Мультивселенной, напомню, что инфляционная модель Вселенной — это гипотеза о физическом состоянии и законе расширения молодой Вселенной (вскоре после Большого взрыва), которая противоречит космологической модели горячей Вселенной. Дело в том, что эта общепринятая модель не лишена недостатков, многие из которых были решены в 1980-х годах ХХ века именно в результате построения инфляционной модели Вселенной.

Примечательно, что какой бы далекой наука о Вселенной не казалась неискушенному читателю, популярная культура совместно с учеными проделали по-настоящему потрясающую работу. Так, в последние годы жизни выдающийся физик-теоретик Стивен Хокинг трудился над темами, от которых у большинства исследователей – по их же признанию – «болит голова»: Хокинг в соавторстве с физиком Томасом Хертогом из Католического университета Левена в Бельгии работали над уже знаменитой статьей, посвященной проблеме Мультивселенной.

Как это часто случается в эпоху фейковых новостей и дезинформции, из-за того, что работа Хокинга и Хертога была размещена на сервере препринтов Airxiv (на этом сервере ученые обмениваются черновиками статей, прежде чем они будут опубликованы в рецензируемых научных журналах), это породило множество безосновательных сообщений о том, что Стивен Хокинг предсказал конец света а заодно предложил способ обнаружения альтернативных вселенных.

На самом же деле само исследование, опубликованное позже в журнале Journal of High Energy Physics, не столь сенсационно. В работе речь идет о парадоксе: если Большой Взрыв породил бесконечные вселенные с неисчерпаемым числом вариаций законов физики, то как ученые могут надеяться ответить на фундаментальные вопросы о том, почему наша Вселенная выглядит именно так как выглядит?

На фото британский физик-теоретик, космолог и астрофизик, писатель Стивен Хокинг

Когда Вселенная возникла, а это произошло примерно 13,8 миллиардов лет назад, она подверглась инфляционно-экспоненциальному расширению за очень короткий промежуток времени. В ходе этого процесса, крошечные квантовые флуктуации в пространстве были увеличены до космических размеров, создавая семена структур, которые станут галактиками и осветят вселенную. Однако, и это еще более удивительно, физик Андрей Линде предполагает, что инфляция по-прежнему происходит. Еще несколько лет назад в интервью The Washington Post он сравнил космос с постоянно растущим куском швейцарского сыра.

И да, если эта идея слишком сильно вас удивляет, вы не одиноки. Некоторые космологи всерьез опасаются «вечной инфляции» — и Мультивселенной, которая может возникнуть из нее. Во-первых, если различные карманные вселенные разъединены, то как мы вообще сможем проверить, что они существуют? Во-вторых, бесконечная Мультивселенная не поддается математическому анализу, что затрудняет использование модели для понимания того, как все работает и взаимодействует в космосе. Вопросов действительно очень много, так что давайте попробуем разобраться в этой увлекательной и популярной теории.

«И сказал Бог: да будет свет!»

Это не совсем единая общепринятая теория как таковая. В мире существует слишком много историй сверхъестественного космологического сотворения мира, которые невозможно перечислить в статье, поэтому все сверхъестественные теории сотворения Вселенной мы помещаем под категорию «И сказал Бог…».

Независимо от того, из чего был сотворен наш мир, будь то из яйца, огня или земли, в большинстве теорий религиозных учений всемогущий творец повелел всему появиться на свет за шесть дней или другое количество дней.

Несмотря на это, многие мифологические интерпретации начала Вселенной лишены конкретики и не являются общепринятыми у ученых всего мира. При этом стоит отметить, что многие известные мировые ученые верят в божественное происхождение мироздания. 

Джордж и тайны вселенной

По Вселенной на астероиде — не может быть! Может! — не сомневаются знаменитый астрофизик Стивен Хокинг, его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.

Джордж, герой книги знаменитого астрофизика Стивена Хокинга, знакомится с новыми соседями; девочкой Анни и ее папой-ученым Эриком. У Эрика есть необыкновенный компьютер, способный в одно мгновение доставить Джорджа и его друзей в любую точку Вселенной. И Джордж отправляется в космическое, путешествие — мимо планет, сквозь астероидный дождь, на самый край нашей Солнечной системы и за ее пределы…

Однако кое-кто задумал использовать гениальный компьютер в недобрых целях, и теперь Эрику с Джорджем грозит страшная опасность — черная дыра!

Захватывающие приключения переплелись в этой книге с научными фактами о нашей Вселенной и с новейшей теорией Стивена Хокинга о черных дырах.

Это история о космических приключениях, в которые отправляются друзья, чтобы больше узнать о мире, в котором мы живём. Это также история о законах физики, которые управляют этим миром. Но, кроме всего прочего, это история об одиноком мальчике по имени Джордж и о том, как изменилась его жизнь с того дня, когда он познакомился со своими новыми соседями — Анни и Эриком. Анни больше всего на свете любит балет, а её отец Эрик, учёный-космолог, больше всего на свете любит космос. Эрику помогает суперкомпьютер по имени… «Космос».

Этот компьютер настолько мощный и настолько умный, что умеет рисовать двери, через которые можно попасть в любую точку Вселенной (конечно, надев при этом скафандр — ведь там, в открытом космосе, страшно холодно!). А пока Джордж и его друзья исследуют космическое пространство, «Космос» управляет полётом… если он на месте, конечно. Но в любой книжке, даже в научно-приключенческой, есть злые силы, которые… Впрочем, не будем рассказывать сюжет заранее, ведь очень скоро вы его узнаете сами.

Европейская премьера книги состоялась в сентябре 2007 года во Франции и Великобритании. В ближайшее время книга будет переведена на множество языков и будет продаваться в 29 странах.

Во второй книжке о Джордже он снова отправится в космическое путешествие по ещё неизвестным нам тропинкам Вселенной. А в 2009-м году вышла третья книга. Которая окажется не последней, выйдет и четвёртая!

Проблема крупномасштабной однородности и изотропности Вселенной

Распределение энергии во Вселенной

Хаббловское расстояние совпадает с размерами наблюдаемой нами Вселенной. Это говорит нам о том, что из-за конечности возраста нашей Вселенной и скорости света можно наблюдать сейчас только те области Вселенной, которые находятся на равном или меньшем расстоянии горизонта наблюдений.

В планковскую эпоху Большого взрыва (самая ранняя стадия развития Вселенной) в наблюдаемой Вселенной состояло около 1090 областей, взаимодействие и причинная связь между которыми отсутствовала. Схожесть начальных условий в таком огромном количестве областей считалась маловероятной. Даже в более поздние периоды Большого взрыва проблема схожести начальных условий в несвязанных причинно областях остается.

Например, в эпоху рекомбинации приходящие к нам с близких направлений фотоны реликтового излучения должны были содействовать с областями первичной плазмы, между которыми за все время их существования не успела установиться причинная связь. Другими словами, можно было рассчитывать на значительную анизотропность реликтового излучения, но наблюдения показывают, что оно изотропно, причем в достаточно высокой степени.

Проблема плоской Вселенной

Согласно последним научным данным плоскость Вселенной весьма близка к критической плоскости, при которой кривизна пространства равна нулю. Согласно научной гипотезе, отклонение плотности Вселенной от критической плотности должно увеличиваться в процессе течения времени. Для объяснения пространственной кривизны Вселенной в рамках стандартной модели, необходимо принять отклонение ее плотности в планковскую эпоху.

Говоря максимально простым языком, стандартная модель горячей Вселенной не способна объяснить плоскость Вселенной, в то время, как инфляционная модель Вселенной позволяет это сделать

Ее постулаты гласят, что неважно насколько сильно было искривлено пространство нашей Вселенной в миг ее инфляционного расширения – по окончанию этого расширения ее пространство оказалось почти полностью прямым. Кривизна пространства, согласно общей теории относительности, зависит от количества энергии и материи, которые в нем находятся

По этой причине в нашей Вселенной находится достаточно материи, чтобы уравновесить хаббловское расширение.

Проблема крупномасштабной структуры Вселенной

Крупномасштабная структура Вселенной

Иерархическая модель крупномасштабного распределения материи во Вселенной представляет собой следующую вертикаль: сверхскопления галактик – скопление галактик – галактики.

Для образования такой четкой иерархической структуры из малых флуктуаций плотности, нужна определенная форма спектра и амплитуда первичных возмущений. Все эти параметры приходится принимать в рамках стандартной модели.

Критика инфляционной теории

Главным критиком инфляционной модели Вселенной выступает английский астрофизик, сэр Роджер Пенроуз. Он утверждает, что хотя инфляционная модель Вселенной является весьма успешной и интересной теорией, однако у нее есть некоторые недостатки. К примеру, данная теория не предлагает никаких веских фундаментальных обоснований того, что на доинфляционной стадии возмущения плотности должны быть настолько малыми, чтобы после инфляции возникла наблюдаемая степень однородности Вселенной.

Еще одно слабое место инфляционной теории, по словам ученого, это ее объяснение пространственной кривизны. Согласно научной гипотезе, во время инфляции пространственная кривизна сильно уменьшается, однако в то же время ничто не мешало пространственной кривизне иметь настолько большое значение, чтобы проявлять себя и на современном этапе развития Вселенной.

Экспериментальные подтверждения инфляционной модели Вселенной

Карта реликтового излучения

Не так давно, в 2014 году был проведен эксперимент, по результатам которого ученым удалось получить косвенные подтверждения инфляционной модели Вселенной. Этим подтверждением в частности послужила поляризация реликтового излучения. Ученые посчитали, что она могла быть вызвана первичными гравитационными колебаниями.

Однако в более позднем опубликованном результате схожего эксперимента от 19 сентября 2014 года, который был проведен коллективом других астрономов при помощи космической обсерватории-спутника «Планк» показал, что результат вышеназванного эксперимента можно отнести к влиянию не первичных гравитационных колебаний, а межгалактической пыли. Таким образом, ученым еще предстоит доказать на опыте инфляционную модель Вселенной.

Что такое Мультивселенная?

Вот мы и подошли к самому интересному – почему спикер Geek Picnic 2020 Андрей Линде, а вместе с ним и писатель-фантаст Йен Макдональд, считает, что мы живем в Мультивселенной? Профессор Стэндфордского университета полагает, что Мультивселенная является ответом на вопрос о том… какого цвета наша Вселенная. Если она черная, то это необходимо доказать, точно так же, как если бы мы считали, что ее цвет белый или желтый. Помните чан с бурлящей водой? Представьте, что если наша Вселенная белого цвета, а профессор Линде считает именно так, другие пузырьки могут быть черными, красными, желтыми, синими, зелеными и так далее. А значит, мы живем в Мультивселенной.

По мнению профессора, находясь в белой области пространства (белой Вселенной) мы не видим другие ее области (красные, фиолетовые, коричневые и др). В свою очередь, в каждой Вселенной должен быть наблюдатель, который попытается объяснить почему его Вселенная, например, красная. Таким образом, мы просто не можем исключить возможность существования красной, желтой, синей, голубой и прочих вселенных.

И если все вышеперечисленное кажется вам не достаточно головокружительным, представьте, что Россия – это единственная страна, о существовании которой мы знаем. В попытках понять, почему Россия устроена так, как устроена, ученые будут искать ответы на вопросы о ее природе и происхождении. Ровно то же самое будут делать ученые из Китая, Великобритании, Индии, США и любой другой страны. Главное условие в этом примере звучит так – жители разных стран не знают о существовании друг друга. Так и Мультивселенная – находясь в белой вселенной мы не знаем, что существуют, например, красные, черные и зеленые.

Мы так мало знаем о Вселенной, что не можем исключить того, что она может быть голограммой

Возвращаясь к Началу начал – Большому взрыву, Линде сравнивает рождение Вселенной из ничего (в результате распада вакуума) с разными состоянии одного вещества – Н2О. Вода, как известно, может находиться в трех состояниях – жидком, газообразном (пар, туман) и твердом (снег, лед, град), а значит и сам вакуум, породивший Вселенную, может иметь разные состояния. Из этого, как вы, вероятно, уже поняли – и следует вывод о множественности миров.

Говоря о Мультивселенной важно понимать, что какой бы удивительной, непонятной, хаотичной и местами безумной не казалась нам эта теория, с точки зрения физики существование Мультивселенной возможно. Отчасти и по этой причине тоже ученые работают над «теорией всего» – теорией, которая смогла бы в полной мере ответить на все вопросы современной физики, включая существование Мультивселенной

По мнению профессора Линде, ближе всего подобрались физики, изучающие теорию струн. Но это уже совсем другая история.

Инфляционная модель Вселенной

В самом начале, когда размер Вселенной не превышал и сантиметра, в ней находилось примерно 10 в 90 степени областей, которые никак не соприкасались друг с другом. Но почему и как в таком случае, они вдруг «поняли», что Вселенной пора расширяться? На самом деле это известная космологическая проблема, которая называется проблемой горизонта (horizon problem). Она возникает из-за сложности объяснения наблюдаемой однородности причинно несвязных областей пространства в отсутствие механизма, задающего одинаковые начальные условия.

Итак, если с помощью телескопа попробовать заглянуть в прошлое, то мы увидим свет от Большого взрыва, которому потребовалось 13,8 миллиардов лет чтобы добраться до нас. Однако Линде указывает на то, что мы видим Вселенную ограниченно. Угол обзора проще всего представить вытянув обе руки влево и вправо – суть в том, что мы находимся в центре и не видим того, что находится за пределами кончиков пальцев обеих рук. Более того, ни правая ни левая рука «понятия не имеет о том, что делает другая».

Наблюдаемую Вселенную проще всего представить в виде сферы, за пределами которой находится неизвестность. На изображении наблюдаемая Вселенная в логарифмическом масштабе.

Следующим не менее важным вопросом является причина, по которой наша Вселенная не вращается. Напомню, все массивные космические объекты от планет до Солнца вращаются, даже сверхмассивные черные дыры в ядрах галактик. При этом, в какое бы направление не посмотрел наблюдатель с Земли – вверх, вниз, влево или вправо – он увидит равные расстояния. Ученые называют это изотропностью – одинаковостью физических свойств во всех направлениях, а также симметрией по отношению к выбору направления.

Выходит, наша Вселенная и правда настолько странная, что ответить на огромное количество вопросов с помощью одной только теории Большого взрыва нельзя. И в самом деле, как объяснить, что Вселенная находясь в вакууме продолжает расширяться с ускорением? Ведь в вакууме нет никаких частиц вообще!

Ответ кроется в физике элементарных частиц. Так, Лоуренс Краусс – физик-теоретик и президент Origins Project Foundation написал книгу, посвященную этому вопросу, она так и называется – «Все из ничего. Как возникла Вселенная,» рекомендуем к прочтению. Андрей Линде в свою очередь считает, что некоторые частицы в вакууме обладают энергетическим зарядом и могут появиться в результате распада вакуума.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Медиа эксперт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: